ONE View

How to generate and use reports with ONE View

Version 1.17.1b

March 2025

~ wWww.magao.org

MAQAO Tutorial series: ONE-View

1 Introduction

ONE View is the MAQAO module in charge of driving all other MAQAO modules in order to
produce reports aggregating results from all these tools. It automatizes the execution of other
MAQAO modules to generate reports in HTML pages, XLSX data sheets or text output.

ONE View offers several built-in reports combining both static and dynamic approaches to
get an overview of the application performance. This document details reports ONE, which
uses MAQAO modules LProf (a dynamic profiler) and CQA (a static code analyser).

2 Running ONE View

To generate a report using ONE View, the default command is:

$ magao oneview --create-report=<report> -c=<config> [-xp=<dir>] [-of=<format>]
[--with-scalability] '\ / /

Enable scalability analysis |~ Report to produce: one

/

Report format:
Name of the configuration file - html (default)
describing the experiment. - XIsx (require zip)
Configuration file is described in next - text
ksection - all (all existing formats)
-

Name of the directory created by ONE-View. If it is not specified, the directory is called
magao_YYYY-MM-DD_hh-mm-ss. It is referred in this file as experiment directory.

.
It is also possible to provide the necessary parameters to ONE View from the command line.

It can be used when a small set of variables in the configuration file is needed. All existing
parameters for the configuration of the experiment are available in sections 3.2 and 3.3.

To list all options for ONE View:

$ magao oneview --help

The report ONE is the simplest and fastest report. It combines a profiling of the application
using LProf module with CQA static analysis on loops and functions. The scalability analysis
contains all data from the report ONE and additional data generated using several profilings
of the application with different values for the number of processes and the number of
threads.

MAQAO Tutorial series: ONE-View

The report ONE (and all other report levels) can be enhanced using one or more cumulative
options that could run additional analyses and add more data into reports. These options are:
e --with-scalability (-WS): Run additional LPROF analyses and add several charts about
application scalability.

e --with-POP: Generate several additional metrics that do not need additional runs.

e --with-FLOPS: Generate several additional metrics that do not need additional runs.
Metrics are based on some hardware counters measured with LPROF.

More options will be added in future MAQAO versions.

3 Filling the Configuration File

3.1 Creating the configuration file

To generate a template of configuration file:

$ magao oneview --create-config[=<file>]

Name of the generated configuration file. If it is not specified, the
configuration file is called config.json and it is created in the current
directory.

{

“config”: {

The template contains all available fields and it is fully documented. This document details all
fields in the next subsections. The configuration file uses the JSON syntax and all elements
must be in a main table named config, as shown in the following figure.

As JSON doesn’t allow comments, the configuration file template uses two tricks to help its
understanding:

e The key “#”is used to write a single line comment
e ONE-View keys never start with the “_” (underscore) character. If a key starts with it,

it means the entry is commented, as ONE-View will ignore it.

3.2 Main fields

- executable: Path to the binary of the application to analyse

- run_command: A string detailing how the application must be run. In this string, the
main executable is referred as <executable>. This substring is automatically replaced
by the correct executable name when ONE View needs to run any version of the

MAQAO Tutorial series: ONE-View

binary.

If the application does not need any parameter, the field has “<executable>" as value.
If the application needs two parameters, -a=5 and --b, the field value must be
“<executable> -a=5 --b”".

- mpi_command: A string detailing the MPI command to use to run the application. If
MPI should not be used, this string must be empty. If MPI is used, this field must
contain the call to mpirun or mpiexec with all its parameters, except the application
and its own parameters.

For example, if an application needs the following command to be run:

$ mpirun -n 4 ./my_app 250 -output=./log.out

{
“content”: {
“executable”: "./my_app",
“run_command”: "<executable> 250 -output=./log.out",
“mpi_command”: "mpirun -n 4",
}
}

The corresponding configuration file contains:

- number_processes: Number of processes to use to run the application. Default is 1.
Can be referred as <number_processes> in the batch_script or the mpi_command
fields.

- batch_command: When the cluster uses a batch manager, this variable describes
how to use it. If a script is needed, it must be referred as <batch_script>.

- batch_script: Path to a script used by a batch manager. The script must be adapted
to ONE View by using the code <run_command> instead of the classic binary
execution command. For example, a batch script adapted for ONE View for SLURM
can be:

#! /bin/bash

#SBATCH SETTINGS
#SBATCH -J myJob

#APPLICATION SETTINGS
module load ..
export MY_VAR ..

#RUN THE APPLICATION
mpiexec -n 16 ./my_app
<mpi_comamnd> <run_command>

MAQAO Tutorial series: ONE-View

- environment_variables: An optional table containing environment variables to be set
before running the application. Each entry is a subtable describing a single
environment variable using fields name for the environment variable name and value
for the environment variable value. Environment variables declaration can be done
using the shortcut syntax envv_<ENV_NAME>=<value>. environment_variables can
be used to set the environment variable OMP_NUM_THREADS used by OpenMP.

- multiruns_params: When scalability report is generated, describes all experiments to
run. It is a table containing one entry per experiment, with following fields:

o humber_processes — Number of processes for the experiment. Default is 1. It
substitutes <number_processes> in the batch_script or the mpi_command
fields for scalability runs.

o number_nodes — Number of nodes for the experiment. Default is 1. It
substitutes number_nodes for scalability runs.

o humber_processes_per_node — Number of processes per node for the
experiment. Default is 1. It substitutes number_processes_per_node for
scalability runs.

o run_command — Command to use to run the executable for the experiment.
Default is the value specified in the run_command configuration field.

o mpi_command — Command to use to run MPI for the experiment. Default is
the value specified in the mpi_command configuration field.

o dataset — Path to the dataset to use for the experiment. Default is the value
specified in the dataset configuration field.

o run_directory — Path to a directory where to run the binary for the experiment.
Default is the value specified in the run_directory configuration field.

o script_variables — A set of user defined variables substituted on a batch script.
Default is the value specified in the script_variables configuration field.

o environment_variables — An optional table containing environment variables to
be set before running the application Each entry is a subtable describing a
single environment variable using fields name for the environment variable
name and value for the environment variable value. Environment variables
declaration can be done using the shortcut syntax
envv_<ENV_NAME>=<value>. environment_variables can be used to set the
environment variable OMP_NUM_THREADS used by OpenMP. Environment
variables set in the base run are preserved in additional runs. To unset an
environment variable, its value must be set to nil or the field unset_envv can
be used.

o unset_envv — Can be a string with an environment variable name to unset for
the run, or a string table with several environment variables hames.

o name — Name used to identify the run in reports. For readability reasons, it is
not always used and can be replaced in some sections of the reports by the
string “run <index>”, with index the position in multiruns_params, starting at 2
(index 1 represents the run described by main parameters)

3.3 Secondary fields

dataset: Path to a directory containing the application dataset. If filled, this directory is
copied or linked (depending on the value of the dataset_handler link) into the
experiment directory. If dataset_handler is set to “copy”, the experiment directory

MAQAO Tutorial series: ONE-View

must not be created in the dataset directory, and it is also advised to have the
directory specified in dataset be as small as possible.

custom_categories: A table describing additional categories used in application
categorization reports. When external_libraries is used, one additional category is
created for each library. If custom_categories is filled, only categories specified are
used. Each category is a subtable with the following fields:

o type - "library" (the custom category is a single library), "all-external-libraries"
(shortcut to get one category for each entry in external-libraries as done by
default), "library_group" to accumulate several libraries into a single category

o Vvalue - "<library name>" when type is "library", nil when type is "all-external-
libraries”, {"libl.s0", "lib2.s0",...} when type is "library_group"

o hame - Used only when type is "library_group", to specify the name of the
catergory

experiment_name: An optional string copied into report main page that can be used
to distinguish various reports.

external_libraries: An optional table describing dynamic libraries to analyse in addition
of the executable. By default, linked libraries are not analysed since most of them are
system libraries that are not the target of optimisation efforts. This option allows to
analyse the loops in the specified libraries, for instance when the application code is
in such a library. Each entry in the table is a string with the name of a library to
analyse.

script_variables: A table of user defined variables that are substituted in the script
defined in batch_script. Each entry has for key the variable name and for value a
string or a number that will replace the tag <variable name> in the script, as for ONE
View built-in variables.

scalability_reference: An optional string detailing which entry in the multiruns_params
table must be used as reference when scalability metrics are computed. Available
values are:

o main — Main experiment defined in the configuration (default value)

lowest-time —The run with the shortest time

highest-time —The run with the highest time

lowest-threads —The run with the lowest number of threads
highest-threads —The run with the highest number of threads
lowest-efficiency —The run with the worst efficiency
highest-efficiency —The run with the best efficiency

o <number>—The run at index <number> in the multiruns_params table

source_code_location: An optional string detailing where the source code is located.
It is needed to localize the source code of your application if it is not at the location
defined in debug data (which is set when compiling the application).

run_directory: A string detailing where the executable should be run. Default value is
the local directory. Some applications must be run from a specific directory, most of
the time related to the dataset directory. This field is used to specify this path. The
substring “<dataset>" can be used to represent the path to the dataset directory
located in the experiment directory and it is automatically substituted by the real path
by ONE View during runs.

maximal_path_number: A number indicating the maximal number of paths in the
control flow graph a loop can have. Loops with a greater number of paths will not be
analysed.

O O O O O O

MAQAO Tutorial series: ONE-View

- number_nodes: Number of nodes to use to run the application on the cluster. Can be
referred as <number_nodes> in the batch_script or the mpi_command fields.

- number_processes_per_node: Number of processes per nodes to use to run the
application. Can be referred as <number_processes_per_node> in the batch_script
or the mpi_command field.

- dataset_handler: Specify how the dataset is handled in the experiment. Default value
is link meaning that a link is created from the experiment directory to the dataset.
copy can be used to copy the full dataset content into the experiment directory.

- keep_executable_location: Specify if the executable must be copied and run from the
experiment directory (false, default value), or if it must be run from its original location
(true).

- lprof_params: An optional string representing additional parameters passed to
LPROF during the profiling step. Refer to the LProf documentation for the list of
available options.

- lprof_post_process_params: An optional table representing additional parameters
passed to LPROF during formatting step.

The following fields are not used by report ONE and reserved for future releases:

- filter

- frequencies

- profile_start

- additional_hwc

- bucket_threshold

- decan_multi_variant
- decan_all variants
- decan_params

- vprof_params

- is_sudo_available
- excluded_areas

- included_areas

3.4 Simple configuration templates

$ magao oneview --create-config-template[=<case>]

Some basic configuration file templates can be generated using the command

The command generates several simple configuration files that list basic options to use
depending on the use case (sequential application, parallel application that uses either MPI
or OpenMP, how to setup a scalability analysis).

The optional value <case> can be used to generate only one template, as all templates are
generated if it is not defined. Available cases are seq, lib, mpi, omp, scalability, script.

MAQAO Tutorial series: ONE-View

4 Reading Reports

Reports are generated in <experiment_directory>'REPORTS/ as
<executable>_<report>.<format>, where <executable> is the analysed executable, <report>
is the value of the parameter --create-report and <format> the value of the parameter format.

4.1 HTML Output

HTLM reports can be read using Mozilla Firefox, Google Chrome and Microsoft Edge web
browsers. The main file is index.html, located in
<experiment_directory>/RESULTS/<report>_html/. All tabs have a menu located at the top of
the tab which can be used to navigate between tabs. All tabs are described in next
subsections. On most on tabs, there are one or several symbols 7 that display help when the
cursor is over them.

4.1.1 Main Menu

Located on the top of each page, the main menu is used to navigate into the report.

Application Functions

Figure 1- HTML report main menu

The orange item is the current location. Global entry can be expanded by moving the cursor
over it to display a sub menu. Additional entries can appear depending of the context.

o Global is the report entry point and described some general data about the
application and the experiment

o Configurations contains all configuration parameters used to generate the
experiment

o Environment Variables lists all environment variables set during the
application execution

o Outputs is a copy of what is displayed on the standard output during the
LPROF run

o Logs is a copy of the log produced during the experiment

e Application contains additional charts about the application

e Functions is a profiling of the application at the function level

e Loops is a profiling of the application at the loop level

e Topology summarizes all nodes, processes and threads run by the application.

o Istopo displays the ouput produced by the external tool Istopo-no-graphic in
order to detail how processes were pinned during the run.

o Istopo_PU uses Istopo-no-graphics and LPROF results to give a view based
on material objects (node / core / processing unit) of processes execution
time.

o Istopo_threads uses Istopo-no-graphics and LPROF results to give a view
based on logical objects (node / process / thread) of processing unit execution
time.

MAQAO Tutorial series: ONE-View

4.1.2 Global

The file index.html is the report index and it presents several sections:

Global Metrics on the top left, that presents several metrics the summarize the
application performances, the application charactristics or potentiel speedup that can
be achieved by performing some changes on the application. Some help about each
metric is available by moving the cursor over the metric name.

Chart box, located on the top right, is used to displayed charts relative to global
metrics. Displayed charts can be changed by clicking on some global metrics
identified by a blue bar on their left when the cursor is over. Clickable metrics will be
detailled in a folowing subsection. When the symbol < appears in the box header
right, it can be clicked to display the summary speedup chart.

Experiment Summary on the page bottom left summarizes several parameters
about the experiment

Configuration Summary on the bottom right displays some of the configuration
parameters set to run the experiment. The full configuration is available in the main
menu entry Configurations

Disclaimer: All screenshots presented in this manual are extracted from the default
report. When the scalability analysis is used, data from all runs are displayed in most of
the pages and charts can be slightly different.

MAQAO Tutorial series: ONE-View

Global Functions

Application

Topology

bt-mz.A.x - 2021-02-19 15:21:14 - MAQAO 2.12.6

Help is available by moving the cursor above any ? symbol or by checking MAQAO website.

0

Global Metrics
Total Time (s)

CQA Potential Speedups Summary

10.3
10.3 1.8
53.57

%)
2)

51.76 L R R EEEEE NN E R RN R R P R PR PP R A P
Time in user code (%) e
<0 e
L _ él '
@ -7
@
v Complexity 1.04 f‘ 1.4
ciency (%) 96.44 5
Perfect OpenMP + MPI| + Pthread 1.01 T 134
Perfect OpenMP + MPI + Pthread + 103 £
Perfect Load Distribution : 124
Potential
No Scalar Speedup (0D 1.1
Integer B S0 U8 -8 0 18 10 18 10 18 18 10 4 48 18 48 18 18 48 18 1810 18 18 18 6 10)
g 1.0 AR ESO
105 AL A S 7T B MONMIDAMDABABML N MR\l abafnbslnfng) 1D KN KL ND 1
EP Vectorised : MNumber of loops
80% g M| If No Scalar Integer (B If FP vectorized [If fully vectorized
Potential
Speedup (8
Nbloopstoget 45

Experiment Summary (7] Configuration Summary Q@

Application INPB3.4-MZ-MPI/bin/bt-mz.A.x Dataset

Timestamp 2021-02-19 15:21:14 Run Command <binary=
Experiment Type MPI; OpenMP; mpirun -n
Machine endurance A AT <number_processes>
Architecture xB6_64 Number Processes 2

Micro Architecture KABY_LAKE OMP_NUM_THREADS 2

Model Name Intel(R) Core(TM) i5-7440HQ CPU @ 2.80GHz Filter Not Used
Cache Size 6144 KB Profile Start Not Used
Number of Cores 4 Maximal Path Number 4

OS Version Linux 4.15.0-43-generic #46~16.04.1-Ubuntu SMP Fri Dec 7 13:31:08 UTC 2018

Architecture used

during static x86_64

analysis

Micro Architecture

used during static KABY_LAKE

analysis

Compilation bt-mz.A.x: GNU 5.4.0 20160609 -mtune=generic -march=x86-64 -g -O3 -fopenmp

Options -fintrinsic-modules-path /usr/lib/gcc/x86_64-linux-gnu/S/finclude

Number of

processes 2

observed

Number of threads 4

observed

MAQAO version 2126

MAQAO build arc3aabad82d22f0e562354d828a16389506ddb4::20210216-185756

Figure 2- Global Report Without Scalability Analysis

4.1.2.1 Global Metrics

e Total Time (s) — Not clickable — Time spent during the application execution
expressed in seconds

e Max (Thread Active Time) (s) — Not clickable, previously Profiled Time (s) — Time
spent during the application profiling execution expressed in seconds. It can be lower
than Total Time (s) when a part of the application is excluded from the profiling using
option profile_start or when the application is passive-waiting (accounted only in total
time).

e Average Active Time (s) — Not clickable — Sum of threads CPU time divided by
threads count.

e Activity Ration (%) — Not clickable — Sum over all threads of their CPU time divided
by the sum of their walltime.

MAQAO Tutorial series: ONE-View
10

e Average Number of Active Threads — Clickable — Sum over all threads of their
active time divided by the application walltime. When clicked, it displays a chart
presenting the metric evolution across the time.

o Affinity Stability (%) — Not clickable — Sum over all threads of the max time spent on
the same CPU divided by the sum over all threads of the thread walltime.

e Time in analysed loops (%) — Clickable — Percentage of time spent in application
loops, based on the Profiled Time (s) value. When clicked, it displays a chart
presenting a loop-based profiling.

e Timein analysed innermost loops (%) — Clickable - Percentage of time spent in
application innermost loops, based on the Profiled Time (s) value. When clicked, it
displays a chart presenting an innermost loop-based profiling.

e Time in user code (%) — Clickable — Percentage of the time spent in the user code,
based on the Profiled Time (s) value. User code corresponds to the functions
located in the application main binary and libraries listed in external_libraries. When
clicked, it displays a categorization of the application.

o Compilation Options Score (%) — Clickable - An analyse of compilation options
used to produce the application binary. Several compilation options are checked for
each source file found in debug data, and a global score is produced. When clicked, it
displays a table detailing for each source file compilation options that are missing to
either improved the report accuracy or to obtain good performances with the compiler.

e Array Access Efficiency (%) — Not clickable — Indicates if data layout is adapted to
processor capabilities or not

o Perfect Flow Complexity — Clickable — Optimistic speedup of the application if the
number of paths is reduced. When clicked, it displays a categorization of loops based
on their path count.

o Perfect OpenMP + MPI + Pthread — Not clickable — Optimistic speedup of the
application if time spent in OpenMP, MPI and Pthread runtimes is null.

e Perfect OpenMP + MPI + Pthread + Perfect Load Distribution — Not clickable —
Optimistic speedup of the application if time spent in OpenMP, MPI and Pthread
runtimes is null and if all threads are perfectly balanced.

e No Scalar Integer — Clickable — Optimistic speedup obtainable if all instructions
performing scalar integer computation and address computation are removed from
the innermost loops. When clicked, it displays a chart detailing the evolution of the
speedup based on which loops are optimized

o FP Vectorised — Clickable — Optimistic speedup that can be achieved if all floating-
point instructions are vectorised in the innermost loops. When clicked, it displays a
chart detailing the evolution of the speedup based on which loops are optimized

o Fully Vectorised — Clickable — Optimistic speedup that can be achieved if all
instructions are vectorised in the innermost loops. When clicked, it displays a chart
detailing the evolution of the speedup based on which loops are optimized

e FP Arithmetic Only — Clickable — Optimistic speedup that can be achieved by
keeping only arithmetic floating-point instructions. When clicked, it displays a chart
detailing the evolution of the speedup based on which loops are optimized

Some additional global metrics are not available in report ONE.

MAQAO Tutorial series: ONE-View
11

4.1.2.2 Charts
This section details all charts that can be displayed in the chart box.

e CQA Potential Speedups Summary — Default chart displayed on the page, it
summarizes various speedups (No Scalar Integer, FP Vectorised, Fully
Vectorised) and their evolution according to the number of optimized loops. The x-
axis corresponds to the number of optimized loops. Loops are ordered by their
coverage. The y-axis corresponds to an optimistic speedup on the total application
time that can be achieved.

CQA Potential Speedups Summary

Potential Speedup
w
L

| g ST e S S
1.0 -
T T T I R R T A N T I - T B T T 1 P T T - O - T B N A B G R - S I RN A R Y)
Number of loops

M| If Mo Scalar Integer If FP vectorized If fully vectorized

Figure 3- CQA Potential Speedups Summary Chart

e Average Active Threads Count — Available through the global metric Average
Number of Active Threads, the chart displays the number of active threads across
the application execution time. The time is split in 100 slices. Bars color varying from
blue to red depending on the value (blue means few threads are active, red means all
threads are active).

Average Active Threads Count =

Count

A 5 A0 A\ 0) A0 D 0) 2y 22 @ a2} 10 19 0 el o o

A°

Time Progress (%)

Figure 4 - Average Active Threads Count Chart

MAQAO Tutorial series: ONE-View

Loop Based Profile — Available through the global metric Time in loops (%), the
chart displays a profiling of the application at the loop level. Loops are grouped based

on their coverage into buckets. Loops are divided into three categories:

Innermost/Single are loops that don’t contain any other loop, InBetween loops are
loops that contain a least one other loop and are contained in a loop, and Outermost
loops contains others loops, but are not contained in a loop. For each bucket and
each loop category, the chart displays the number of loops and the coverage they

represent. In addition, the cumulated coverage across buckets in displayed.
Loop Based Profile

12

60

35

BN - 49 *>
25

20

Coverage (%)
&
B

0 0 0 0 0 0 0 0 0 0 0

- -

4% to B% 2% to 4% 1% to 2% 0.5% to 1% 0.25% to 0.5% 0.125% to 0.25%

Coverage Range

M| Innermost/Single [InBetween

Figure 5- Loop Based Profile Chart

Innermost Loop Based Profile — Available through the global metric Time in

- 40

< 0.125%

Outermost [l Cumulated Innermost/Single [l Cumulated InBetween [l Cumulated Outermost [l Cumulated Total

innermost loops (%), the chart is similar to Loop Based Profile, but it focuses on

Innermost/Single loops only.
Innermost Loop Based Profile

60

Number of Loops

12 52

0

- 40

0.25% to 0.5%

= B% 4% to B% 2% to 4% 1% to 2% 0.5% to 1%

Coverage Range

M Humber of Loops || Coverage over Range (%) Cumulated Coverage (%)

Figure 6 - Innermost Loop Based Profile Chart

0.125% to 0.25%

= 0.125%

e Application Categorization - Available through the global metric Time in user code
(%), the chart details the percentage of the application spent in various categories.

Cumul %)

Coverage (%)

MAQAO Tutorial series: ONE-View

13
Custom categories can be created using configuration parameter custom_categories.
Application Categorization <&
M EBinary
| MPI
M| OMP
MW Math
M System
M Pthread
| _[ile}
M String
M| Memory
W Others
Figure 7- Application Categorization Chart
e Loop Path Count Profile — Available through the global metric Perfect Flow
Complexity, the chart categorizes innermost loops into buckets according to their
number of paths. For each bucket, the chart displays the number of loops it contains
and how much coverage it represents. In addition, the cumulated coverage across
buckets is displayed. The chart allows to detect if the application has potential
performances issues because of loops with multiple number of paths.
Loop Path Count Profile a
35 60
52 52 52 52 52 52
w422 - . . > P 2
747 a7 P 50
25
40

Number of Loops
g
Coverage (%)

0 0 0 0 0 0 0 0 0 1] 0 0 0

=

1 1 Jto4 5to8 Pto 16 17 to 32 33 to 64 = 64 unknown
Path Count

M Number of Loops B Coverage over Range (%) B Cumulated Coverage (%)

Figure 8 - Loop Path Count Profile Chart

e Cumulated Speedup If ... - Available through global metrics No Scalar Integer, FP
Vectorised and Fully Vectorised, the chart details one specific speedup shown in
CQA Potential Speedups Summary based on the clicked global metric. The x-axis

MAQAO Tutorial series: ONE-View

14

corresponds to loops sorted by the higher global speedup.
Cumulated Speedup If No Scalar Integer

1.07

1.06

1.05

1.04

Potential Speedup

N R R S T A e AP0 S),), 6l 9.0 oh “.Q\B’l e WY B, B
r;»*‘t»*r;*»pf PR R Rk ok ’v*’ﬁ:w SO S s SO S ol S o @f”pf’ﬁ?ﬁ?-ﬁ%#x;x-n»-- Kok

bl Yy R AL L L 1/ bl ALl bbb AL RN \/{‘ b \r bbb Lt L L L R g
B SN B BN “ﬂ-}“\-}“ @“\i“ gw\;owiﬂn“\i“\ﬂﬂwgm@“ “WL i“”@c“ N A R

Loop identifiers

Figure 9 - Cumulated Speedup if ... Chart

4.1.3 Summary

The Summary tab shows various analysis at the application level and at loop level. It is split
in three sections:

4.1.3.1 Stylizer

A basic analysis at application level that checks if the ONE-View run is relevant or if it must
be redo after some changes. Each analysis has a score based on the importance of the
issue (higher means more important) and a color based on that score (green means
everything is good, red means there is an issue that should be fixed in most of time, orange
means there is a minor issue).

4.1.3.2 Strategizer

An analysis at application level that checks basic performance metrics. As for Stylizer, each
analysis has a score based on the importance of the issue (higher means more important)
and a color based on that score (green means everything is good, red means there is an
issue that should be fixed in most of time, orange means there is a minor issue).

4.1.3.3 Optimizer
An analysis at loop level that checks performance issues of hotter innermost loops, based on
4 axes:

e Loop Computation Issues — Issues related to how numerical computation is done.

e Control Flow Issues — Issues related to the loop control flow that could cause
performance issues.

o Data Access Issues — Issues related to how data is accessed in the loop.

e Vectorization Roadblocks — Issues that prevent efficient vectorization.

Each analysis as a score related to the estimated difficulty to fix it. The same analysis can
appear several times as it can be related to various analysis axes.

Loops can be clicked to open their own report detailed in section 4.1.8.

MAQAO Tutorial series: ONE-View
15

4.1.4 Application

The Application tab shows several charts available by clicking on the corresponding menu
entry on the left. Menu entries whose name started by Scalability are only available in
scalability reports. Other entries are available on all reports.

4.1.4.1 Application Categorization

Similar to the graph of the same name presented in section 4.1.2.2, it details the percentage
of the application spent in various categories. The section Detailed Application
Categorization can be expanded to reveal a table with all data for each thread, process and
node. An example is available with Figure 10 - Application Categorization. In this example,
there is about 20% of the application time spent in MPI runtime (not MPI parallel sections),
70% in the application code (including parallel regions) and 10% in two other categories.

]\/[Am/l fj Global Application Functions Topology

Application Categorization

Application Categorization

?
Function Based Profile ?
Loop Based Profile 2

?

Detailed Loop Based Profile

M| Binary
MPI

M| Math

M| System

M| Pthread

M| Others

p» Detailed Application Categorization

Figure 10 - Application Categorization

4.1.4.2 Function Based Profile

It presents a profiling of the application at the function level. Functions are grouped by
coverage in buckets and for each bucket, three metrics are available:

- The number of functions in the bucket,
- The total coverage of the bucket,
- The cumulated coverage with all previous buckets

An example is available with Figure 11 - Function Based Profile. The example presents an
application containing five functions with a coverage greater than 8%, which represents 54%
of the total time.

MAQAO Tutorial series: ONE-View

} ” L‘ m _‘ ’1 Global Application Functions Topology

16

Scalability - Coverage per Category 140

Scalability - Time per Category

Function Based Profile ? 120 |
Scalability - Coverage per Parallel Efficiency
Loop Based Profile ? 100 4

Detailed Loop Based Profile

Number of Functions

>8% 4% to 8% 2% 1o 4% 1% to 2% 0.5% to 1% 0.25% to 0.5% 0.125% to 0.25% <0.125%
Coverage Range

M| Number of Functions (] Coverage over Range [l Cumulated Coverage

Figure 11 - Function Based Profile

4.1.4.3 Scalability - Coverage Per Category

This view is only available for reports executed with scalability mode enabled. It presents the
same data than section 4.1.4.1, but there is one bar per configuration in the scalability
parameters. Configurations are formatted as <nb_processes>-<nb_threads> It allows to see
the impact of the number of processes and threads on the different categories. An example
is shown by Figure 12 - Scalability: Coverage Per Category. In the example, we can see the
time spent in MPI library increase with the number of processes.

Global Application Functions Topology

Application Categorization Ell Scalability - Coverage per Category
I Scalability - Coverage per Category 100.000
Scalability - Time per Category
Function Based Profile ? 85.714
Scalability - Coverage per Parallel Efficiency
Loop Based Profile ? 71.429 -
Detailed Loop Based Profile
£ 57143
o
<3
&
o
3 42857
[}
28571+
14.286 -
0,000 -
11 21 41 81
Configuration (Processes MPI - Threads OpenMP)
[Binary (B MPI [B Math (B System [l Pthread [Others
» Detailed Co ge per Category

Figure 12 - Scalability: Coverage Per Category

4.1.4.4 Scalability - Time Per Category

This view is only available for reports executed with scalability mode enabled. It presents
data similar than section 4.1.4.3, but now displays time (in seconds) instead of coverage. It

120

Application Categorization ? Function Based Profile

Coverage (%s)

MAQAO Tutorial series: ONE-View
17

allows to see the impact of the parallelism over the application time and categories. An
example is presented by Figure 13 - Scalability: Time Per Category.

]\/fﬂ %A’W Global Application Functions Topology

Application Categorization EB Scalability - Time per Category
Scalability - Coverage per Category

Scalability - Time per Category

Function Based Profile ?
Scalability - Coverage per Parallel Efficiency

Loop Based Profile ?
Detailed Loop Based Profile ?

Time (s) (lower is better)

11 21 41 81
Configuration (Processes MPI - Threads OpenMP)

I Binary [MPI [l Math [System [l Pthread [l Others

» Detailed Time per Category

Figure 13 - Scalability: Time Per Category

4.1.4.5 Scalability - Coverage Per Parallel Efficiency

This chart is only available for reports executed with scalability mode enabled. It presents the
efficiency of functions across runs of the scalability analysis. The efficiency is based on the
first run described in parameters so the first bar is always in the grey color. Grey elements
are functions that where not found during the first profiling. Colours varies from green for
efficient functions to red for not efficient functions. An example is displayed by Figure 14 -
Scalability: Coverage per Parallel Efficiency.

MASAO Global Application Functions Topology

Application Categorization Ell Scalability - Coverage per Parallel Efficiency
Scalability - Coverage per Category 100,000
Scalability - Time per Category
Function Based Profile ? 85.714 -
Scalability - Coverage per Parallel Efficiency
Loop Based Profile ? 71428 4
Detailed Loop Based Profile ? e

£ 57143

o

&

g

I}

3 42857

3]

28571 4
14.286 -
0.000
11 21 41 81
Configuration (Processes MPI - Threads OpenMP)
%0 10% _ 10%10 20010 30%to 40%to 50%to 60%t0 70% to 80%to 0% o New o
cficiency M 20% | 30% W 40% |50% W/ 60% W 70% I/ 80% I 90% W 100% unmeasured
e efficiency efficiency efficiency efficiency efficiency efficiency efficiency efficiency efficiency functions
» Detailed Coverage per Parallel Efficiency

Figure 14 - Scalability: Coverage per Parallel Efficiency

MAQAO Tutorial series: ONE-View

4.1.5 Functions

The Functions tab presents a profiling of the application at the function level, listing all
detected functions with their coverage. By clicking on the arrow on the left of any function,
the box can be opened to reveal all profiled loops belonging to the function represented as a
tree. Loops can also be opened by clicking on the left arrow. If a loop has a circle instead of
an arrow, it means it is an innermost loop. All coverages are global to the application. A row
can be fully expanded by clicking on the symbol + appearing on the right of the current row.

By clicking on a column header, the table is sorted according to this column.

By right-clicking on a row (either loop or function), a menu appears and allows to display
several charts:

- Load Distribution: The distribution of the function / loop coverage across threads.

- Sorted Load Distribution: The distribution of the function / loop coverage descending
sorted across threads.

- Load Distribution All Threads: The distribution of the function / loop coverage across
threads, including 0 values for threads that do not execute the function / loop.

- Scalability Report: Only available in the scalability analysis, it presents the efficiency
and the speedup of the functions / loop across all experiments of the scalability
analysis.

- Load Callchains: A table displaying call chains of the selected function or loop.

- Gotoreports ...: Open the detailed report of the selected function or loop in the
current tab.

The topmost tab Filter allows to filter the functions according to the library where they are
defined.

By double-clicking on a function or a loop, a new tab presenting all results for the loop is
opened in the browser. Details about loop tabs are described in the subsection Loop and
details about function tabs are described in the subsection Function.

In the scalability report, optional columns can be displayed by clicking on boxes in the list
above the table to display efficiency and speedups from the scalability analysis.

4.1.6 Function

The Function tab is not accessible from the menu, but only from tabs Functions and
Loops. This tab is split in two panels with a width that can be adjusted by moving the vertical
blue bar on the left or on the right. Each panel content can be changed by selecting a report
in the select box. Current reports are:

- The source code if available.

- The call chains table.

- The load distributions charts.

- The CQA report. More details about CQA are available in the CQA tutorial available
at http://magao.org/release/MAQAOQ.Tutorial. CQA.intel64.pdf. Current path can be

18

http://maqao.org/release/MAQAO.Tutorial.CQA.intel64.pdf

MAQAO Tutorial series: ONE-View

changed using arrows in the path selection header or by selecting a path identifier in
the text box then clicking on the OK button.

- The function loop hierarchy with links to all its loops report.

- In the scalability report, the function scalability report.

The symbol Ei can be clicked to open the current panel in a new browser tab. The same
report cannot be opened in both panels.

4.1.7 Loops

The Loops tab presents a profiling of the application at the loop level, listing all analysed
loops. For each loop, there is the MAQAO identifier, data about the location in the source
code and the coverage with a colour associated to it. The colour is red when the loop is hot
(high coverage) and it goes to blue when the loop is cold (low coverage).

Additional columns can be displayed by checking to corresponding box just above the table.
By clicking on a column header, the table is sorted according to this column.
By right-clicking on a row, a menu appears and allows to display several charts:

- Load Distribution: The distribution of the loop coverage across threads.

- Sorted Load Distribution: The distribution of the loop coverage descending sorted
across threads.

- Load Distribution All Threads: The distribution of the loop coverage across threads,
including 0 values for threads that do not execute the loop.

- Scalability Report: Only available in the scalability analysis, it presents the efficiency
and the speedup of the loop across all experiments of the scalability analysis.

The topmost tab Filter allows to filter the loops according to the library where they are
defined.

By double clicking on a loop, a new tab presenting all results for the loop is opened in the
browser. Details about this tab are described in the subsection Loop.

4.1.8 Loop

The tab Loop is not accessible from the menu, but only from tabs Functions and Loops.
This tab contains all available data about a specific loop and is similar than Function tab
described in section 4.1.6. Its reports are:

- The source code if available,

- The assembly code with a memory group analysis that can be displayed by clicking
on the corresponding button. A memory group is a set of assembly instructions that
access to a same memory region. Most of the time, it corresponds to a same source
data structure.

- The call chains table.

- The load distributions charts

- The CQA report. More details about CQA are available in the CQA tutorial available
at http://magao.org/release/MAQAO.Tutorial. CQA.intel64.pdf. Current path can be
changed using arrows in the path selection header or by selecting a path identifier in
the text box then clicking on the OK button.

19

http://maqao.org/release/MAQAO.Tutorial.CQA.intel64.pdf

MAQAO Tutorial series: ONE-View

- Atable with more advanced CQA metrics
- In the scalability report, the function scalability report.

The symbol K can be clicked to open the current panel in a new browser tab. The same
report cannot be opened in both panels.

4.1.9 Topology

The tab Topology presents the topology of the run, meaning how threads, processes and
nodes used during the run are organised. The table can be expanded by clicking on the left
arrow, or fully expanded by clicking on the + symbol appearing on the right of the current
row.

By double-clicking on a thread row, a new tab with the thread profiling at the function level is
opened and by right-clicking on it, a contextual menu appears, allowing to open the thread
profiling using button Profile, or to display a chart describing thread usage across time using
button Usage.

In the scalability report, additional tables are available for each experiment.

4.2 Text Output

The text report is displayed on the terminal. It can be customized using several options:

e --text-global [=on/off]: Display Global section if parameter is on (default), else do not
display it if off.

¢ --text-summary [=on/off]: Display Summary section if parameter is on (default), else
do not display it if off.

o --text-application [=on/off]: Display Application section if parameter is on (default),
else do not display it if off.

e --text-functions [=on/off]: Display Functions section if parameter is on (default), else
do not display it if off.

o --text-functions-full [=on/off]: Display all data for Function section if parameter is on
(default), else do not display it if off.

o --text-loops [=on/off]: Display Loops section if parameter is on (default), else do not
display it if off.

o --text-loops-full [=on/off]: Display all data for Loops section if parameter is on
(default), else do not display it if off.

o --text-cqa [=on/off/[module:]id1, [module:]id2]: Display CQA section if parameter is on
(default), else do not display it if off. Analysed loops can be filtered by giving for each
loop its module (binary (default) or an entry in external_libraries) and its MAQAO
identifier.

o --text-cqa-full [=zon/off/[module:]id1, [module:]id2] Display all data for CQA section if
parameter is on (default), else do not display it if off. Analysed loops can be filtered by
giving for each loop its module (binary (default) or an entry in external_libraries) and
its MAQAO identifier.

Default output display sections Global, Summary, Application, Functions, Loops and CQA.

Text report sections are similar to corresponding HTML sections. CQA section is CQA
reports of selected loops.

20

MAQAO Tutorial series: ONE-View

There is no special output for scalability in text output, it will be added in a future update.

4.3 XLSX Output

Available using option --output-format=xIsx in the command line, XLSX files can be read by
several softwares: Microsoft Office Excel, LibreOffice, OpenOffice. The file contains several
tabs with a content presented in HTML section (section 4.1). To generate XLSX reports, the
command ‘zip’ must be available.

5 Comparing Reports

During the optimization process, applications are often analysed several times to get results
of various changes. As it can be time consuming to compare manually several reports, ONE-
View offers a way to generate an HTML report that compare existing ONE-View reports.

$ magao oneview --compare-reports --inputs=<xpl>,<xp2>..

There are no restrictions on what can be compared using this option. It handles various
applications, architectures, compilations options, source code ...

It produces a directory containing an HTML report. index.html is the main file and is very
similar to what is presented in section 4.1.2, excepted charts compare given runs instead of
focusing on a single one. It is shown in Figure 15 - Comparison Index.

To improve the readability of the section Experiment Summary, values across runs are
compared. However, the comparison of compilation options can fail as source files used for
the comparison are selected using their coverages which can change between runs.

21

MAQAO Tutorial series: ONE-View
22

M _\.ml 0O Global Functions

Help is available by moving the cursor above any ? symbol or by checking MAQAD website

| » Compared Reports
Global Metrics @ | Application Categorization
2968 10.32
2968 10.32
Ti (%) 8297 35.00
Time in innermost loops (%) 81.59

Time in user code (%)
Compilation Options

Perfect Flow Complexity
Array Access Efficiency (%)

Perfect OpenMP + MPI + Pthread + Perfect

Load Disibuton Lt e E
2865 105 .
No Scalar Integer e 6
182 105 10.00
FP Veclonsed 180% 13 7
R ial Speedup 334 1.68 .
Fuly Vectorised i oops 1o gat 80% 19 12 s
oo L
un 1 u
Reports
8 System [Binary (W) MP1 8 OMP [String
Experiment Summaries 7]
Application INPB3 4-MZ MPIbin/bt-mz A x_00 INPB3 4-MZ MPIbin/bt-mz A x_03
Timestamp
Experiment Type MPI; OpenMP; MPI; OpenMP;
Machine endurance endurance
Architecture x86_64 x86_64
Micro Architecture Y_LAKE KABY_LAKE
Model Name Intel(R) Core(TM) i5-7440HQ CPU @ 2 80GHz Inted(R) Core(TM) i5-7440HQ CPU @ 2 B0GHz
Cache Size 6144 KB 6144 KB
Number of Cores 4 4
Maximal Frequency 38GHz 38GHz
08 Version Linux 4.15.0-43-generic #46~16.04.1-Ubuntu SMP Fri Dec 7 13:31.08 UTC 2018 Linux 4.15.0-43-generic #46~16.04.1-Ubuntu SMP Fri Dec 7 13:31:08 UTC 2018
Architecture used during static analysis x86_64 x86_64
Micro Architecture used during static analysis KABY LAKE KABY LAKE
Compilation Options bt-mz Ax_00 GNU 5.4 .0 20160809 -miune=generic -march=x86 64 -g -00 btmz A x_03 GNU 5.4.0 20160809 -miune=generic -march=x86-64 g -03
P -fopenmp -fintrinsic-modules-path /ust/libigec/x86_64-linux-gnu/5finclude -fopenmp -fintrinsic-modules-path /ust/libigec/x86_64-linux-gnu/S/finclude
Number of processes observed 2 2
Number of threads observed 4 4
MAQAO version 2126 2126
MAQAO build a7claa5adB2d22f0e562354d828a16380506ddb4 :20210216-185756 a7claabad82d22f0e562354d828a16380506ddb4 :20210216-185756

Figure 15 - Comparison Index

summary.html presents a comparison of all Summary reports. Sections Stylizer and
Strategizer are similar to what is presented for classic ONE-View report as described in
sections 4.1.3.1 and 4.1.3.2. Section Optimizer reuses categories described in section
4.1.3.3 to details how many times each issue appears in analysed runs. An example is
shown by Figure 16 - Summary Comparison.

Global

MAGAO

Summary

MAQAO Tutorial series: ONE-View

Functions

23

v Stylizer

orig

[2.99 / 3] Architecture specific option -march=native is used

[2.99 /3] Most of time spent in analyzed modules comes from
functions compiled with -g and -fno-omit-frame-pointer

-g option gives access to debugging informations, such are

source locations. -fno-omit-frame-pointer improve the accuracy
of callchains found during the application profiling.

[2/2] Application is correctly profiled ("Others" category
represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category

"Others" represents less than 20% of the execution time in order
to analyze as much as possible of the user code

[2.99 / 3] Optimization level option is correctly used

[47 4] Application profile is long enough (52.39 s)

To have good quality measurements, it is advised that the
application profiling time is greater than 10 seconds.

gce 9

[3.00/ 3] Architecture specific option -march=sapphirerapids is used

[3.00/ 3] Most of time spent in analyzed modules comes from
functions compiled with -g and -fnc-omit-frame-pointer

-g option gives access to debugging informations, such are source
locations. -fno-omit-frame-pointer improve the of i

icx 5
[3.00/ 3] Architecture specific option -x SAPPHIRERAPIDS is
used

[3.00/ 3] Most of time spent in analyzed modules comes from
functions iled with -g and - it-f pointer

-g option gives access to debugging informations, such are source

found during the application profiling.

[2/2] Application is correctly profiled ("Others" category represents
0.00 % of the execution time)

To have a representative profiling, it is advised that the category

"Others" represents less than 20% of the execution time in order to
analyze as much as possible of the user code

[3/ 3] Optimization level option is correctly used

[474] Application profile is long enough (58.14 s)

To have good quality measurements, it is advised that the application
profiling time is greater than 10 seconds.

locations. -fn pointer improve the accuracy of
callchains found during the application profiling.

[2/ 2] Application is correctly profiled ("Others" category
represents 0.00 % of the execution time)
To have a representative profiling, it is advised that the category

"Others" represents less than 20% of the execution time in order to
analyze as much as possible of the user code

[3/ 3] Optimization level option is correctly used

[4/ 4] Application profile is long enough (48.25 s)

To have good quality measurements, it is advised that the
application profiling time is greater than 10 seconds.

Presence of expensive instructions: scatter/gather

Figure 16 - Summary Comparison

|p- Strategizer
¥ Optimizer
\} Loops List \
Analysis rl r2 r3

Presence of expensive FP instructions 1 2 1

Loop Computation Issues Less than 10% of the FP ADD/SUB/MUL arithmetic operations are performed using FMA 0 1 0

Presence of a large number of scalar integer instructions 2 1 4

Presence of 2 to 4 paths 2 1 1

Control Flow Issues Presence of more than 4 paths 1 4 1
Non-innermost loop 3 5 2

Presence of constant non-unit stride data access 3 3 2

Presence of indirect access 2 0 1

More than 10% of the vector loads instructions are unaligned 2 3 5

Data Access Issues 0 1 0

functions.html presents a function-based profile of all the given reports. Results are

displayed using two layouts:

First layout uses source locations to group assembly functions into a virtual source

function. Each box contains one source function. This layout can be used when the
compiler generated several assembly versions of the same source loop, or when the
assembly function renaming is different from a compiler to another one.

Second layout (named Old Layout in the report) uses assembly files and function

names to group assembly functions. As there may have a lot of differences between
compared experiments, some functions may not appear in all runs and their
corresponding values are nil. Rows can be sorted by clicking on any column header.

Both layouts are shown by Figure 17 - Functions Comparison.

MAQAO Tutorial series: ONE-View
24

MA@AO Global Summary Functions Loops e

| show All Functions | | Order by Coverages | | Order by Locations |

Functions (2]

[v Collapse.hpp: 81 - 262.86 %

Run orig Run gcc_9 Runicx_5
Show Show Show
Function Function Function
Source Source Source
Regions Regions Regions
ASMFct Coverage Time| Nb |Deviation Deviation GFLOP/| ASMFct Coverage Time Nb | Deviation Deviation GFLOP/| ASM Fct Coverage Time Nb | Deviation Deviat
ID (%) (s) Threads (cov) (tps) s ID (%) (s) |Threads| (cov) (tps) s 1D (%) (s) |Threads| (cov) (tps
298 3.18 1.66 |96 0.29 0.12 120.92 392 3.69 215 |96 0.62 0.23 9382 |314 0.15 0.07 |96 0.02 0.01
374 1.28 0.67 |96 0.08 0.03 119.56 |420 1.28 0.75 |96 0.17 0.06 118.66 |361 1.36 0.66 |96 0.10 0.04
279 2.70 1.42 |96 017 0.04 142.06 |337 3.26 1.89 |96 0.36 0.23 106.24 |286 2.76 1.33 |96 0.12 0.04
336 76.02 39.83/96 142 2.02 11121 [408 87.93 51.13/96 2.69 3.27 89.25 |300 3.07 148 |96 0.27 0.12
317 0.12 0.06 |96 0.02 0.01 189.05 [399 0.15 0.09 |96 0.04 0.01 140.22 |333 75.89 36.62|96 103 0.51
[v OId Layout
p» Filters
Deviation - =
Name Module Coverage (%) Time (s) Nb Threads GFLOPIs (coverage) Deviation (time)
orig gcc_9icx 5/ orig gec 9jicx 5/origigec 9icx 5| orig gec 9| icx 5 fori . 9icx_5lorig gcc_9icx 5

void Kripke:: D|spatc:hHeIpel<Krlpke :ArchT_OpenMP>::operator()<Kr|
ipke::LayoutT_DGZ, Kripke: Kripke::Sdo binary
mid&, Kripke::Core::Set&, Kripke::Core::Set&, Kripke::Core::Seté&, Kr
ipke::Core::Field<double, Kri...

'void RAJA::internal 1tExecutor<RAJA::statement::Collapse
<RAJA::.omp_parallel_collapse_exec, camp::int_seq<long, 0I, 11>, R
AJA: 1it::For<2l, RAJA::policy::loop::loop_exec, RAJA::state
ment::For<3l, RAJA::policy::loop::loop_exec..

bool _INTERNAL021345¢c1::_ km| pﬁwanilemplate< kmp_flag_64<fal

76.02) NA 75.89|30.83 NA [36.62) 96 | NA | 96 |111.21 NA |120.86/1.42| NA ' 1.03|2.02) NA |0.51

libkripke.so NA |87.93| NA | NA [51.13| NA |[NA| 96 | NA | NA |89.25| NA |NA| 269 | NA | NA|3.27 | NA

se, true>, true, false, true>(kmp_info*, kmp_flag_64<false, true>*, voi libiomp5.so 15.60 NA 1568|817 NA |756|94 NA 94 | 0.00 | NA | 0.00 |1.17 NA | 131|055 NA |0.67
d*)

void Kripke::DispatchHelper<Kripke::ArchT_OpenMP>::operator()<Kr
ipke::LayoutT_DGZ, LTi dom, Kripke::Sdomld&, Kripke::Core:.S
et const&, Kripke::Core::Set const&, Kripke::Core::Set const&, Kripke|

binary 3.18| NA |3.07|166 NA |148)96| NA | 96 [120.92) NA |136.07{0.28| NA |0.27 |0.12| NA |0.12

|:Core:: Set const&, Kripke::Cor..
wvoid LPlusTir operator()<Kripke::ArchLayoutT<Kripke::Arch
T_OpenMP. Kripke: LayourT_DGZ>>(Kripke:ArchLayoutT<Kripk .
ei:ArchT_OpenMP, Kripke::LayoutT_DGZ>, Kripke::Sdomid, Kripke::
Core::Set const&, Kripke::Core::Set const&, K...

270 NA 276|142 NA [133|96 NA | 96 |142.06 NA |151.12|0.17| NA 0.12 |0.04) NA 0.04

Figure 17 - Functions Comparison

loops.html presents a source loop-based comparison, that is computed by gathering
assembly loops that share a common start source location.

Each source loop is a block that can be expanded to display all the matching source regions
and some metrics about assembly loops for each run. The coverage associated to the
source loop is the sum across all runs of all assembly loop coverages that have been
attached to it.

Source loops can be ordered by global coverage (default order) or by source location using
buttons on the top of the page. By default, only source functions whose at least one
assembly loop has been found in each run are displayed. The button “Show All Loops” can
be used to display all found source loops. An example is shown by Figure 18 - Loops
Comparison.

MAQAO Tutorial series: ONE-View

25

Global Summary Functions Loops
Uperators.npp: 3u7-3u FopUlalion.Cpp: 58-58 - e N
Loop « Thomeleoseret/ Loop « lhomeleoseret] Loop gg_%kzelbul\dlKnpkefslclKnpkelKemeIILﬁmes,cpp.
qaas_runs_CPU_9468/171-147-9160fintel/ gaas_runs_CPU_9468/171-147-9160/intel/
Source Kripke/build/Kripke/src/Kripke/Kernel/ Source Kripke/build/Kripke/src/Kripke/Kernel/ Source + /nomefeoseret/
Regions Populati - 58.58 Regions LPlusTi L 57.57 Regions qaas_runs_CPU_9468/171-147-9160/intel/
opulation.cpp: usTimes.cpp: Kripke/build/Kripke/src/Kripke/Kernel/

« lhome/eoseret/ « /home/eoseret/ SweepSubdomain.cpp: 87-89
qa_asirun_sfc P_U7946!3/171—147-9160l|nlelf qa.asJun_sicPU79468/1_71_-147-91GO/mtelt_ « Jhomeleoseret! .
gC:/Zk:;g:I:;ﬂ;ﬁgr:gggﬁgmeme” \Iiilg’(iﬁ);l\%}g\fg?!tp\frajallncludefRAJA!ullll qaas_runs_CPU_9468/171-147-9160fntel/

e Kripke/build/Kripke/src/Kripke/Kernel/

» /home/eoseret/ + /home/eoseret/ SweepSubdomain.cpp: 95-105
qarasirunsicPU79465/171—14?—9160!mlelf qaasJunSﬁCPU79468/1?1—14779160/|ntelt « Jhomeleoseret! e
e Kt pe ons

e e Kripke/build/Kripke/tpliraja/include/RAJA/util/

« /home/eoseret/ « /home/eoseret/ Qperators.hpp: 307-307
qaas_runs_CPU_9468/171-147-9160/intel/ qaas_runs_CPU_9468/171-147-9160/intel/ . homeleosert
Egﬁlksék:;nelgt‘l:(;g)klse;?é(:?IKr\pkelKernel/ gg%kzefbu|\dlKr\pke[srcﬂKnpkefKeme\ILTlmes.cpp. qa_asirun§7CP_U79468!17_1—147-9160f\nte\!

- Kripke/build/Kripke/src/Kripke/Kernel/
Population.cpp: 58-58
2 Time Time Time
Max Time Max Time Max Time
ASM | oOver | Wrb cg, Vect | Veclor iopop | gy | over | WK gy Yoot Veclor fop op| asm | over | WEL coy| Vet | Veclor op op
Loop D | Threads Wall ©6) Ratio | Length s LoopID Threads Wall %) Ratio | Length s LoopID | Threads Wall) Ratio | Length s
Time (%) | Use (%) Time (%) | Use (%) Time (%) | Use (%)
(s) (s) (s) (s)) (s)
931 184 1.66 3.17 |100 50 121 428 0.09 0.09 0.15 [100 50 139.8 760 134 127 2.63 (100 50 152.3
1057 0.08 0.06 0.12 |100 50 189.98 |329 1.99 1.89 3.25 |100 50 106.34 |688 0.61 0.01 0.03 (100 50 0
1297 0.69 0.66 1.26 [11.54 |13.94 118.35 |550 0.71 0.70 1210 125 122.08 |682 0.67 0.01 0.03 (100 50 0
811 1.44 1.42 2.70 |100 50 142,17 |407 2.16 2.14 3.69 |100 50 93.91 676 247 0.05 0.11 (100 50 0
729 0.25 0.01 0.01 (100 50 0
901 0.75 0.60 1.25 100 50 111.65
1333 0.71 0.63 1.31|10.34 |13.79 122.97
758 0.12 0.06 0.13 (100 50 129.15
1047 0.09 0.07 0.15 (100 50 116.91
903 1.18 0.87 1.81 |100 50 153.19
Sum on 4 analyzed binary loops (exec - 931, exec - 1057, exec - |Sum on 4 analyzed binary loops (libkripke.so - 428, libkripke.so - |Sum on 7 analyzed binary loops (exec - 760, exec - 676, exec -
1297, exec - 811) 329, libkripke.so - 550, libkripke.so - 407) 901, exec - 1333, exec - 758, exec - 1047, exec - 903)
Analysis Count Analysis Count Analysis Count
Loop Computation Issues Loop Computation Issues Loop Computation Issues
Presence of a large number of scalar integer Presence of a large number of scalar integer Presence of a large number of scalar integer 1
instructions. instructions instructions
Data Access Issues Data Access Issues Data Access Issues
Presence of constant non-unit stride data access 0 Presence of constant non-unit stride data access 1 Presence of constant non-unit stride data access 0
More than 10% of the vector loads instructions are 1 More than 10% of the vector loads instructions are 1 More than 10% of the vector loads instructions are 1
unaligned unaligned unaligned
Vectorization Roadblocks Vectorization Roadblocks Vectorization Roadblocks
Presence of constant non-unit stride data access Presence of constant non-unit stride data access 1 Presence of constant non-unit stride data access

6 S

Figure 18 - Loops Comparison

tability Report

$ magao oneview --analyze-stability -c=<config> [..]

ONE-View can be used to analyze an application or system stability by running and
measuring the application several times and then computes statistics across runs.

Several specific options can be used to customize the analysis:

-rep / --repetitions — Select how many times the application must be run. Default value
is 31.

--delay — Define a delay in second between two consecutive runs. Default value is O.
--ranges-count — Define the number of ranges used in statistics computation. Default
is 20.

--outliers-count — Define how many outliers runs must be removed during statistics
computation. Default is 0.

Other options detailed in sections 3.2 and 3.3 can also be used to customize or configure a
run to generate stability reports.

MAQAO Tutorial series: ONE-View
26

6.1 Global

As presented in section 4.1.2 and shown by Figure 19 - Stability Index, the file index.html is
the report index and it presents several sections. Only the content of the chart section,
shown by Figure 20 - Stability Charts will be detailed.

M A@AO Global Functions
gmx_mpi - 2023-08-09 16:04:21 - MAQAO 2.20.10
Help is available by moving the cursor above any [')} symbol or by checking MAQAO website.
Global Metrics @ | Max (Thread Active Time) =
Total Time (s) 56.56 -
Max (Thread Active Time) (s) 54.61 3
Time in analyzed loops (%) 70.1 50
Time in analyzed innermost loops (%) 53.1 -
Time in user code (%) 711 —
E 40+
=
@ 354
=
£ 304
o
8 254
=
E 24
g 154
LR
5.
o
1 [1 1 21 % 31
Run index
min | med | avg | max |
54.36 5461 54.67 55.77
Darraontilo Inday I"an | 20 | an | an | ®ma | w0 | 70 | =1 | an | 1on |
Experiment Summary Configuration Summary
Experiment Name Dataset /homefeoseret/GROMACS/DATA/
_— Ihome/eoseret/ GROMACS/installficx/bin/ GROMACS_TestCaseA
Application "
gmx_mpi <executable> mdrun -s
Timestamp 2023-08-09 16:04:21 Universal Timestamp 1691580861 Run Command ion_channel.tpr -nsteps 10000 -
Numhar nf nraracene nheansmard 1 Number of threads (5] deffnm icx

Figure 19 - Stability Index

Chart section contains:

e Afirst bar chart presenting the selected metric value across all runs,

e Some basic statistics computed on these values (minimum, median, average and
maximum),

e A percentile repartition,

e A second bar chart presenting the distribution of values into ranges. Ranges are
determined by splitting the interval between the minimum and the maximum into
several sub intervals that have the same size.

MAQAO Tutorial series: ONE-View

Total Time

Total Time

5 7 9 11 13 15 17 19 21 23 25 27 29 31
Run index

med | avg max |

56.28 56.56 56.62 57.79
Percentile Index 10 | 20 | 30 | 40 | 50 60 70 | 80 | 920 100 |
Value 56.32 56.40 56.51 56.53 56.55 56.57 56.65 56.68 56.79 57.79

Count

56.2-56.36 56.44 - 56.51 56.59 - 56.66 56.74 -56.81 56.69 - 56.96 57.04-57.11 5719 5727 57,34 57.42 57.49° 5757 57645772 57.79-57.67
Ranges

Figure 20 - Stability Charts

6.2 Functions

functions.html reuses what is presented in Section 4.1.5 with metrics specific to stability
reports. Each function / loop can be double clicked to open the corresponding object report in
a new page.

6.3 Loops

loops.html presents a listing of innermost loops, sorted by their coverage. Data can be
sorted by clicking on any column header, columns can be displayed / hidden using
checkboxes in the section Columns Filter, and each metric can be clicked to display charts
and data presented in the chart section from section 6.1. Loop IDs can be clicked to display
the corresponding loop report

6.4 Loop / Function

Each function and loop has its own report that contains two sections:

¢ On the left side, the object source code
e On the right side, data and charts presented in Section 6.1. The displayed metric can
be selected using the top scrolling list.

27

