
Evaluating Out-of-Order Engine Limitations
using Uop Flow Simulation

Vincent Palomares1, David C. Wong2, David J. Kuck2, and William Jalby1

1 University of Versailles Saint-Quentin-en-Yvelines, France
{firstname.lastname}@uvsq.fr

2 Intel Corporation, Champaign, U.S.A.
david.c.wong@intel.com, david.kuck@intel.com

Abstract. Out-of-order mechanisms in recent microarchitectures do a
very good job at hiding latencies and improving performance. However,
they come with limitations not easily modeled statically, and hard to
quantify exactly even dynamically. This paper will present Uop Flow
Simulation (UFS), a loop performance prediction technique accounting
for such restrictions by combining static analysis and cycle-driven simu-
lation. UFS simulates the behavior of the execution pipeline when exe-
cuting a loop. It handles instruction latencies, dependencies, out-of-order
resource consumption and other low-level details while completely ignor-
ing semantics. We will use a UFS prototype to validate our approach on
Sandy Bridge using loops from real-world HPC applications, showing it
is both accurate and very fast (reaching simulation speeds of hundreds
of thousands of cycles per second).

1 Introduction

Different performance models can be built with very different purposes in mind.
For instance, CPU architects may need very low-level cycle-accurate simulators
to find and fix bugs in their design, in which case accuracy is so important that
practical aspects like processing time and lightweightness become completely
secondary. At the other end of the spectrum, models like Intel Architecture
Code Analyzer (IACA) [1], Code Quality Analyzer (CQA) [2] and Cape [3] aim
to provide good-enough predictions at minimum cost, both in terms of time and
space. Many models have been developed as compromises between these two
extremes.

In this paper, we will present Uop Flow Simulation [4] (UFS), a technique
to accurately evaluate a loop’s performance for L1 data sets by simulating the
behavior of a CPU’s out-of-order engine on a cycle-accurate basis, and offering
the following advantages:

1. Modeling key components of the out-of-order engine (issue, buffers, dis-
patch...) with a reasonable accuracy.

2. Very fast speed: several hundred thousand simulated cycles per second in
typical cases.

3. Low memory consumption: only a few MB of RAM are required.
4. Small input files: only limited, statically extracted information needs to be

used for a given loop.

We will present a motivating example to showcase the value of UFS and
describe our model in details. Then, we will validate our implementation on
real-world loops from the AVBP [5] and YALES2 [6] industrial applications,
targeting the Sandy Bridge microarchitecture.

We will use CQA as a reference point to highlight our model’s contribution.
CQA leverages a performance model close to the one developed in IACA, op-
erating in a mostly bandwidth-centric fashion and overlooking the impact of
out-of-order buffers. Both CQA and our UFS prototype operate at the binary
loop level and rely on static information extracted using the MAQAO [7] frame-
work to perform their analyses, making them easy to compare.

2 Motivating Example

(a) Source Code (b) Source Level DDG

Fig. 1: Realft2 4 de Codelet
Realft2 4 de is a codelet from our Numerical Recipes suite, and is part of an inverse

Fourier transform algorithm. The DDG (Data Dependency Graph) was made at source
level for clarity purposes.

Realft2 4 de (Figure 1(a)) is a codelet from our Numerical Recipes suite, and
is part of an inverse Fourier transform algorithm. It is a particularly interesting
codelet as it suffers from an important CQA error even for L1 data sets. Indeed,
CQA overestimates the loop’s speed by roughly 45% (see Table 1), making it a
good case for detailed study.

Detailed investigation using hardware counters revealed that stalls due to
out-of-order resource scarcity may have had an impact on the actual perfor-
mance. While not all stalls necessarily impede the execution, this was still an
interesting lead directly incriminating the Reservation Station (RS): as tholds
uops until their operands are ready, it gets particularly stressed when there are

dependencies between instructions. We gave them a particular scrutiny in Fig-
ure 1(b).

Running UFS on the target loop gives encouraging results (see Table 1), com-
pletely filling the gap between the CQA cycles estimation and the measurement.

Table 1: Realft2 4 de: Measurements, CQA and UFS Projections

Source Cycles Stalls Error (Cycles)

Measured 23.36 7.85 [RS] N/A

CQA 16.00 N/A 31.51%

UFS (Normal buffers) 23.01 19.97 [RS] 1.50%

UFS (Large buffers) 19.03 5.65 [ROB] N/A

The target microarchitecture is Sandy Bridge. Durations and stalls represents val-
ues per assembly loop iteration. The error metric is defined as:

error = |measured execution time − predicted execution time

measured execution time
|

While the simulated stalls count the number of cycles where at least 1 uop could
not be issued due to a buffer being full, what hardware counters exactly measure is not
very clear (and could e.g. be the number of cycles where no uop at all was issued),
explaining the importance of the gap between measured and simulated stall counts.

We can notice a 31% gap between the measured time per iteration and the
bandwidth-centric CQA projection. Measured resource stall counters indicate
the Reservation Station (not modeled by CQA) may have been hindering per-
formance, though they do not guarantee it is the case.

The error for UFS (with regular Sandy Bridge parameters) is of only 1.50%,
a significant improvement over CQA’s 31.51%. This accuracy gain is due to two
main factors:

1. RS size awareness: running UFS again with a virtually infinite RS size shows
that 4 cycles could be gained from having larger out-of-order buffers (Ta-
ble 1).

2. Realistic dispatch: hardware heuristics prioritized uops that are not on the
critical path.

Furthermore, running UFS again with all out-of-order resources set to have 1000
entries (UFS - Large Buffers row) shows nearly 4 (23.01− 19.03 = 3.98) cycles
can be gained by merely increasing buffer sizes, demonstrating that buffers do
indeed limit performance here.

The CQA evaluation represents the performance the loop would attain if not
for these issues.

3 Model Presentation

The purpose of the model is to account for limitations of the out-of-order engine
not taken into account in CQA using a limited cycle-accurate simulation. The

semantics of instructions is completely disregarded; only the flow of uops is being
computed, estimating the speed at which uops may travel through the pipeline.

Detailed interactions between uops and the pipeline are taken into account
for this purpose. For instance, the simulation keeps track of in-flight uops and
the number of available resources, constraining the simulated flow of uops as a
real system would. Dispatching constraints and heuristics are also implemented,
allowing for a realistic estimation of port load in complex loops.

3.1 Limited Input

The simulator uses two types of inputs:

1. Loop information: as the model is only tracking the flow of uops and not
their semantic purpose, register and memory values are not needed. It uses
only basic information obtainable from static analysis, such as the type,
register operands and outputs for each instruction in the studied loop. It
also uses Agner’s instruction tables [8] as reference for instruction dispatch
port(s) and latency. Just as with CQA, loop inputs are generated using the
MAQAO [9] framework. An example input is provided in Table 2.

2. Microarchitecture information: simple parameters such as the size of each
out-of-order resource or the Front-End and issue uop bandwidth are needed.
Default values (see Table 3) can be provided for each target microarchitec-
ture. All the studied microarchitectures have an issue and retire bandwidth
of 4 uops per cycle. A few behaviors are also microarchitecture specific, such
as the status of microfused uops in the ROB.

The number of loop iterations to simulate can also be specified, with a default
value of 1000.

3.2 Model Overview

UFS simulates as many cycles as needed for the last uop of the N th iteration to
retire, with N being the number of iterations to simulate. The different simula-
tion steps for a cycle are as follows:

1. Issue: inserts new uops in the ROB (and RS if need be) and allocates all
needed resources. This step is done in order.

2. Dispatch: removes uops from the RS when all the uops they depend on were
properly executed and a compatible execution port is available. This is done
out of order.

3. Update: flags uops as being executed L cycles after they were dispatched,
with L being their attributed latency. Also releases the Load Matrix entries
used by executed load uops. This is also done out of order.

4. Retire: removes executed uops from the pipeline and releases the resources
they still held. In a real microarchitecture, this is the step at which executed
uops’ outputs would be committed to the architectural state. Retirement is
done in order.

Table 2: Partial UFS Loop Input Example (Realft2 4 de)
#Insn Nb FE Type Input Output Latency Ports

1 1 compute XMM1 XMM10 1 P5

2 1 compute RAX RDI 1 P1, P5

...

8 1 load RSI, RDI XMM15 4 P2, P3

...

store addr RSI, R8 1 P2, P3
53 1

store XMM15 3 P4

54 1 branch RDX, RAX test 1 P5

The specifics of what an instruction exactly does is irrelevant for UFS. Instead,
only characteristics such as the number of uops it takes in the Front-End (Nb FE),
input/output registers and latency are important.

The type category allows us to determine what type of resource the uop will need
to get issued (e.g. branch buffer entry for branch uops), coupled with the output field:
for instance, instruction 1 is going to need a vector register as it produces an XMM
value, while instruction 2 will need an integer one.

The ports column provides a list of ports compatible with the uop.
In some cases, a single instruction gets split into several uops. As each of them

may potentially have different attributes, differences between them need to be described
explicitly. This is the case for instruction 53.

Complementary attributes are sometimes needed, e.g. in case of division uops, as
they are going to use special resources exclusively for variable amounts of time.

The current cycle count (i.e. number of cycles simulated so far) is maintained
and updated every cycle.

Figure 2 presents an overview of the model. We will describe details for each
simulated component in the coming sections.

3.3 Simplified Front-End

As UFS targets loops, we can safely assume that all the uops sent to the uop
queue come from the uop cache, hence ignoring the legacy decode pipeline and
its limitations and providing a constant uop bandwidth of 4 per cycle. While
the uop cache has limitations of its own (e.g. it cannot generate more than 32B
worth of uops in a cycle), we decided to ignore them as we could not find real
world cases where they got in the picture. This is partly due to compilers being
smart enough to avoid dangerous situations by using code padding.

We also assume the branch predictor is perfect and never makes mistakes,
meaning we do not need to simulate any roll back mechanisms. This is a decently
safe assumption for the loops we study due to their high numbers of iterations,
but reduces the applicability of UFS for loops with unpredictable branch pat-
terns.

We consequently model Front-End performance in a simplified way:

Table 3: Default Microarchitectural Input Parameters
Sandy Ivy

Microarchitecture
Bridge Bridge

Haswell

Front-End (FE) Bandwidth 4 4 4

Branch Buffer (BB) Entries 48 48 48

Load Buffer (LB) Entries 64 64 72

Load Matrix (LM) Entries 32 32 32

FP Physical Registers (FP - PRF) 112 113 138

Integer Physical Registers (Int - PRF) 128 130 144

Max Number of Allocated Registers (All - PRF) 141 165 177

ReOrder Buffer (ROB) Entries 165 168 192

Reservation Station (RS) Entries 48 51 51

Store Buffer (SB) Entries 36 36 42

ReOrder Buffer Microfusion No Yes Yes

Reservation Station Microfusion No No No

We found the practical sizes of the PRFs, the ROB and the RS to be different from
the official ones in all three microarchitectures [10]. Such differences can be explained
by e.g. the mode the processor is working in (64-bit mode exposes more named regis-
ters than the 32-bit one), resources needed to maintain the architectural state (e.g. 16
physical registers for the 16 named registers), the number of pipeline stages involved
in allocating or releasing resources, or by technical limitations unknown to us. In any
case, the simulator inputs should be the number of resources available for speculation.

1. For Sandy Bridge (SNB) / Ivy Bridge (IVB): 4 uops can be generated every
cycle, except a uop queue limitation prevents uops from different iterations
from being sent to the Resource Allocation Table (RAT) in the same cycle.
For instance, if a loop body contains 10 uops, the uop queue will send 4 uops
in the first two cycles, but only 2 in the third.

2. For Haswell (HSW): 4 uops can be generated every cycle: the limit experi-
enced in SNB and IVB was apparently lifted.

In some cases, the uop queue has to unfuse microfused uops (or unlaminate
uops) before being able to send them to the RAT [11], causing more issue band-
width to be consumed (and sometimes, also more out-of-order resources). We
take common cases into account using the following rules:

1. For SNB / IVB, unlaminate when the number of register inputs for the whole
instruction is greater than 2.

2. For HSW, unlaminate when the number of register inputs and outputs for
an AVX instruction is greater than 4. This rule was obtained empirically.

3.4 Resource Allocation Table (RAT)

The simulated RAT is in charge of issuing uops from the Uop Queue to the
ROB and the RS, as well as allocating the resources necessary to their proper
execution and binding them to specific ports.

Fig. 2: UFS Uop Flow Chart
Several types of uops are used in the pipeline. For instance, Front-End uops (FE

uops) are different from Queue uops or ROB uops. Generally, the closer to the Front-
End, the closer to the original instruction the uop is. As different components can split
uops when processing them, Back-End uops may contain less of the original information
and semantic than their earlier counterparts. In other words, more Back-End uops than
FE uops may be needed to describe the same instruction. Such transformations will be
detailed in the matching component’s modeling description.

The ROB and the RS are both resources and uop containers. Other resources have
a more passive role and do not describe uops, acting instead as mere dependencies.

It does not have any bandwidth limit other than the one induced by the Uop
Queue’s output.

Resource Allocation In regular cases, resource allocation is quite straight-
forward. For instance, all uops need a spot in the ReOrder Buffer (ROB), loads
need Load Buffer (LB) and Load Matrix (LM) entries, etc. However, it gets more
complex when an instruction is decomposed into more than a single uop. In our
implementation, all resources needed at the instruction level will be allocated
when the first uop reaches the Back-End. For instance, stores are decomposed
into a store address and a store data uops: in this case, a Store Buffer (SB) entry
will be reserved as soon as the store address uop is issued, and the second uop
will be assumed to use the same entry. However, individual uop resources (ROB
or RS entry) will still be allocated at the uop granularity.

It is important to note that if any resource is missing for the uop being
currently considered, the RAT will stall and not issue any other uop until re-
sources for the first one are first made available. This is commonly referred to
as a resource stall.

Port Binding Available information about dispatch algorithms in recent Intel
microprocessors is rare and limited. We decided to bind uops to single ports in
the RAT, sparing the RS from having to do a complex cycle-per-cycle evaluation
of dispatch opportunities. Smarter strategies could be used, but we preferred to
keep our simulation rules as simple as reasonably possible.

The simulated RAT keeps track of the number of in-flight uops assigned to
each port, and assigns any queue uop with several port options to the least
loaded one. In case of equality, the port with the lowest digit is assigned (this
creates a slight bias towards low-digit ports).

This process is repeated on a per-uop basis, i.e. the simulated RAT uses
knowledge generated by issuing younger uops in the same cycle, rather than
using counts only updated once a cycle, which may in turn be optimistic.

Arbitrary numbers of ports can be activated as their use is regulated by
the loop input file anyway (see Table 2). New microarchitectures with more (or
fewer) ports could be simulated by tweaking input files’ uop port attribution
scheme to match the target’s.

3.5 Out-of-Order Flow

Reservation Station (Uop Scheduler) When arriving in the Reservation
Station, queue uops that are still microfused get split in two, simplifying the
dispatch mechanism.

The RS holds uops until a) their operands are ready, b) the needed port is
free and c) the needed functional unit is available. When all conditions are met,
the RS dispatches uops to their assigned port prioritizing older uops, releasing
the RS entries they used.

Port and Functional Unit Modeling Ports act as gateways to the functional
units they manage. They are modeled as all being completely identical, and
being able to process any uop sent to them by the RS. Functional units are not
modeled distinctly, and constraints over them are modeled inside their respective
port instead. Several rules are applied to match realistic settings:

1. A port can only process a single uop per cycle (enforced by dispatch algo-
rithm).

2. Uops can be flagged as needing exclusive use of certain functional units for
several cycles. For instance, division uops will make exclusive use of the
divider unit for (potentially) dozens of cycles. A port processing such a uop
will flag itself as not being able to handle other uops needing this particular
unit for the specified duration. The same mechanism is also used for 256-bit

memory operations on SNB and IVB. A port with busy functional units can
still service uops not needing them.

3. While the port itself does not check whether it should legally be able to
process a given uop, the RS verifies this a priori, preventing such situations
in the first place.

Uop Execution Status Modeling ROB uops have a time stamp field used
to mark their status, and holding the cycle count at which they will be fully
executed. By convention, the default value for newly issued uops is −1: its output
is available if current cycle count ≥ the uop′s execution time stamp > −1.

Updating ROB uops’ execution time stamp is typically done at dispatch time:
as we deal with constant latencies, we can know in advance on what cycle the
uop’s output is going to be ready (current cycle count + uop latency).

In the case of typical nop-typed instructions (such as NOP and zero-idiom
instructions like XOR %some reg, %same reg), the time stamp is directly popu-
lated with a correct value at issue time, reflecting the RAT being able to process
them completely in our target microarchitectures. As they also have 0 cycle of
latency, their stamp is simply set to current cycle count.

However, we found an extra simulation step to be necessary to handle zero-
latency register moves (implemented in IVB and HSW), which are nop-typed
and are entirely handled at issue time too. Contrary to NOPs or zero-idioms,
register moves have register inputs, the availability of which is not necessarily
established yet when the move uop is issued. We tackle this issue by inserting
such uops with a negative time stamp if their input operand’s availability is not
known yet, and letting a new “uop status update” simulation step update them
when it is.

This new update step is also in charge of releasing Load Matrix entries allo-
cated to the load uops whose execution was just completed.

3.6 Retirement

The retirement unit removes uops from the ROB and releases their resources
(other than RS and LM entries, which were already freed earlier in the pipeline).

1. Retirement is done in-order: no uop can be retired if an older uop still exists
in the ROB. This is necessary to be able to handle precise exceptions and
rollback to a legal state.

2. The default retirement bandwidth is the same as the FE’s (4 uops per cycle)
to prevent retirement from being the bottleneck in terms of throughput. To
ensure this, ROB uops that are still microfused in the RAT are only counted
as a single uop for retirement purposes.

3. Resources released in a given cycle cannot be reused in the same cycle.
Our understanding is that it would be extremely complex to implement a
solution allowing this, with very little performance to be gained (potentially
increasing each resource’s effective size by a maximum of 4). Note: we apply
the same reasoning to the RS and the LM, even though their entries are

freed at dispatch time (for the RS) or update/completion time (for the LM)
instead of at retirement.

4. Resources allocated at the instruction level at issue time are released when
retiring the last uop for this specific instruction. This is consistent with the
resource allocation scheme we use at the issue step.

3.7 Overlooked Issues

Many aspects of the target microarchitectures are not simulated. Some of them
are inherently so due to our approach and the lack of dynamic information, such
as cache and RAM behavior, Read after Write (RAW) memory dependencies
and branch mispredictions.

Others are implementation choices and may be subject to change, like the
number of pipeline stages (which could have an impact on the resource allocation
scheme), the impact of yet-to-be-executed store address uops on later load and
store uops, writeback bus conflicts [12] or partial register stalls [13].

Furthermore, while a lot of information is available concerning the way Intel
CPUs work, many hardware implementation details are not publicly available.
We could fill some of the gaps using reasonable guesses, but they are probably
flawed to some degree, restricting the accuracy attainable by our model.

4 Validation

The validation work for UFS is twofold:

1. Accuracy: checking whether the model provides faithful time estimations for
loops operating in L1.

2. Speed: making sure simulations are not prohibitively slow for their intended
use.

We will focus on Sandy Bridge validation, as identifying performance drops
on this microarchitecture was the primary motivation for developing UFS in the
first place. Furthermore, its modeling is used as basis for IVB and HSW support,
making SNB validation particularly important.

We will use the fidelity metric (defined here as fidelity = 1 − error) to
represent UFS accuracy for each studied loop, and systematically compare UFS
results with CQA projections to highlight our model’s contributions.

A short study of the time taken by our UFS prototype will be made, and
results will be presented in terms of simulated cycles per second.

4.1 Fidelity

Experimental Setup The host machine had a two-socket E5-2670 SNB CPU,
with 32 KB of data L1 cache, 256 KB of L2, and 20 MB of L3. It also had 32
GB of DDR3 RAM.

For each tested application, we selected loops that:

1. Are hot spots: the studied loops are relevant to the application’s perfor-
mance.

2. Are innermost, have no conditional code and can therefore be analyzed out
of context.

3. Have a measured time greater than 500 cycles per loop call. This is needed
to make sure measurements are reliable (small ones can be inconsistent [14]).
This may exclude small loops that are called numerous times.

Performance measurements were performed in vivo using the DECAN [15]
differential analysis tool.

We use DECAN variant DL1 to force all memory accesses to hit constant
locations, and thereby getting a precise idea of what the original loop’s perfor-
mance would be if its working set fit in L1. This also allows us to make direct
comparisons between measured cycles per iteration vs. UFS and CQA projec-
tions, as other components of the memory hierarchy are artificially withdrawn
from the picture.

AVBP AVBP [5] is a parallel CFD numerical simulator targeting reactive un-
steady flows. Its performance scales nearly linearly for up to 4K nodes.

Fig. 3: In Vivo Validation for DL1: AVBP
Results are sorted by descending UFS fidelity.

Figure 3 shows UFS and CQA results for 29 AVBP hot loops on Sandy
Bridge. UFS shows fidelity gains of more than 5 percentage points for 9 of them,
with a maximum gain of 27 percentage points for loops 7507 and 7510. Other
important gains include 20 percentage points for loops 7719 and 3665.

The worst fidelity for UFS is 78.18% for loop 13906 (against 66.76% for CQA
on loop 3665).

The average fidelity is of 91.73% for UFS, versus 86.34% for CQA.

YALES2: 3D Cylinder YALES2 [6, 16] is a numerical simulator of turbulent
reactive flows using the Large Eddy Simulation method. Its performance scales
almost linearly with the number of execution cores even with thousands of cores.

Fig. 4: In Vivo Validation for DL1: YALES2 (3D Cylinder)
Results are sorted by descending UFS fidelity.

Figure 4 shows UFS and CQA results for the 3D cylinder part of this applica-
tion. UFS shows fidelity gains of more than 5 percentage points for 12 loops out
of 26, with a maximum gain of 35 for loop 22062. Other particularly important
gains include 28 and 24 percentage points for respectively loops 22040 and 4389.

Some loops’ performance are impacted by factors apparently not modeled by
UFS, with disappointing fidelities of respectively 65.01% and 75.32% for loops
3754 and 3424.

The average fidelity is of 91.67% for UFS, versus 82.93% for CQA.

4.2 Simulation Speed

Speed is very important for performance evaluation tools, especially in the con-
text of optimization: various versions of a program can be tested, e.g. trying
different compiler flags or hand optimizations.

The quality of a model can be thought of in terms of return on investment:
are the model’s insights worth their cost?

We will hence study UFS’s speed in this section, and evaluate the cost of
UFS analyses.

Experimental Setup Simulations were run serially on a desktop machine with
an i7-4770 HSW CPU, running at 3.4 GHz. They were run on a single core, with
32 KB of L1 data cache, 256 KB of L2 cache and 8 MB of L3. It also had 16 GB
of DDR3 RAM.

The targeted microarchitecture was SNB, with its default microarchitectural
parameters, but simulating different numbers of iterations: 1000 and 100 000.
The former is the default one and the most relevant to our analysis, while the lat-
ter was run to give an idea of sustained simulation speeds past the initialization
phase (slowed down by I/O).

Execution times were measured using the time Linux tool, with a resolu-
tion time of 10 ms. While other measurement methods would be more precise,
we deemed this one to be enough for our intended purposes. Furthermore, the
time needed to generate the loop input files with MAQAO is not counted here.
Measures were performed with 11 meta-repetitions to stabilize results.

Fig. 5: UFS Speed Validation for AVBP
Results are sorted by descending UFS execution time.
Our UFS prototype simulates an average of 300K cycles per second for the studied

loops. This average is 1.6x higher when simulating 100 000 iterations.

AVBP Figure 5 shows simulation speeds for the AVBP loops we studied. Here,
the time needed to simulate 1000 iterations has a high variability, and can go from
as low as .02 seconds for loop 3685 to as high as 2.73 seconds for loop 7578. The
average simulation time is of around .28 seconds for each loop. This is due to the
high complexity of some of the loops, which comprise hundreds of instructions
(200 assembly statements on average). In the case of loop 7578, there are 1337
instructions (including divisions), making each of the 1000 iterations require
many simulated cycles to complete. Hence, each iteration needs more simulated
cycles to complete. Furthermore, the number of instructions can impact the
locality of our UFS prototype’s data structures, with large loops consequently
being simulated less quickly.

For AVBP, we achieve on average:

1. Simulation times (for 1000 iterations) of approximately .28 seconds per loop:
we can sequentially simulate around 3.57 loops per second.

2. The simulation of 318K cycles per second for 1000 iterations (and 519K for
100 000 iterations).

Fig. 6: UFS Speed Validation for YALES2: 3D Cylinder
Results are sorted by descending UFS execution time.
Our UFS prototype typically simulates around 200K cycles per second here. This

number doubles when simulating 100 000 iterations.
In practice, simulation times are around .10 seconds for each loop.

YALES2: 3D Cylinder Figure 6 shows simulation speeds for the YALES2
(3D Cylinder) loops we studied.

As with AVBP loops, the simulation time for 1000 iterations is highly vari-
able, going from .02 to .56 seconds. Simulations take .13 seconds on average,
which is shorter than for AVBP (.28 seconds). We can hence sequentially sim-
ulate an average number of ∼ 7.69 YALES2 loops per second. The difference is
due to YALES2 loops being relatively less complex, with an average size of 110
assembly statements (against 200 for AVBP).

However, the average number of simulated cycles per second is similar, reach-
ing 281K cycles per second when simulating 1000 iterations –against 318K cycles
per second on AVBP– (respectively 549K and 519K when simulating 100 000
iterations).

Comparison with CQA We will quickly assess CQA’s speed to compare it
to UFS’s. To do so, we ran CQA on the AVBP binary for all the loops studied
earlier (in a single run).

When removing the overhead due to the MAQAO framework (mostly consist-
ing in disassembling the binary) to make fair comparisons with UFS, we found

that CQA could process 30.98 loops per second. We can hence roughly estimate
UFS to be 30.98/3.57 ' 8.68x for AVBP’s hot loops.

Applied to YALES2, the same methodology shows that CQA can process
42.85 loops per second when targeting the hot loops we studied earlier. This
brings the overhead for using UFS to 42.85/7.69 ' 5.57x for YALES2’s loop
hotspots.

This difference is larger (∼ 13x) for smaller loops, of which CQA can process
around 280 per second, compared to approximately 21 with UFS (the detailed
data is not presented in this paper).

Overall, UFS analyses take around 10x more time than CQA’s.

5 Sensitivity Analyses

We can use UFS to perform sensitivity analyses and evaluate how loops of in-
terest would behave given different microarchitectural inputs.

5.1 Latency Sensitivity Analysis

Fig. 7: Sensitivity Analysis: Load Latency
The unit of the Load Latency axis is cycles. The presented loops were extracted from

the Numerical Recipes [17, 3], except for ptr chasing.
We can see loops can react very differently to latency increases, with pointer chasing

being most impacted.

We will evaluate the behavior of different loops as the performance of the
cache hierarchy varies. While our model does not support detailed cache model-
ing, we can still change L1 performance by changing the latency of load and/or
store uops.

Figure 7 shows how different loops react to latency variation. We can notice
a wide range of behaviors, with interesting outliers:

– ptr chasing : a loop chasing dependent pointers (1 pointer per iteration),
and where only one load uop can consequently be executed in parallel. Load
latency entirely governs its performance: its Cycles per Iteration metric scales
perfectly with the latency of loads on the studied range of latencies (slope
= 1x). This represents the worst case scenario for latency scaling.

– hqr 15 se: a loop with very few arithmetic operations per load, allowing it
to execute many load uops in parallel. It can absorb important amounts of
latency wihout getting degraded performance (up to 39 cycles), and then its
Cycles per Iteration value scales only weakly with latency (slope ' 0.09x).

Furthermore, some loops surprisingly get better performance for higher la-
tencies (which is most noticeable on realft2 4 de, where the number of Cycles per
Iteration drops on point 8): the change in latency causes uops from the Reser-
vation Station to become ready at different times, changing the order in which
they get dispatched (and coincidentally reaching a better dispatch scheme than
with a lower load latency). This only happens locally, though, and the regular
behavior (of performance dropping as latency increases) gets back in the picture
on later data points.

5.2 Resource Size Sensitivity Analysis

We can also easily quantify how sensitive a loop is to the size of out-of-order
buffers, i.e. see the impact of buffer sizes on instruction level parallelism (ILP)
for the studied loop.

In Figure 8, we evaluate how a loop’s performance varies depending on the
sizes of the RS and other buffers (and particularly the ROB). We can see that no
speedup can be achieved from merely increasing the size of the RS (coordinates
(2, 1)). However, increasing the size of other buffers (and particularly that of
the ROB, in this case) by 25% can provide a speedup of 1.22x (coordinates (1,
1.25)). We can observe diminishing returns, though, as higher speedups are very
expensive to get. For instance, reaching e.g. 1.32x requires increasing the size of
the RS by 25% and those of other buffers by 75%.

Interestingly, we can see that reducing the size of the RS can provide a
speedup of 1.06x (coordinates (0.8, 1)). Similarly to the odd cases presented
above for latency changes, this is due to how the dispatch order of uops can be
changed in a coincidentally better way when degrading buffer sizes. However,
such counter-intuitive cases are uncommon.

Furthermore, we can observe that decreasing the size of all buffers by 60%
(coordinates (0.4, 0.4)) causes a negative speedup of only 0.69x (i.e. a 31%
performance penalty).

We can hence easily determine the sweet spot for performance per buffer
entry with UFS, as well as any degrees of compromise between small buffer sizes
and best achievable ILP. However, other models and tools are needed to evaluate

Fig. 8: Sensitivity Analysis: Resource Scaling Speedup (YALES2: Loop 4389)
This heatmap represents the speedup obtainable when scaling the size of the

Reservation Station or/and other out-of-order buffers, with regular Sandy Bridge
parameters being used as reference (on coordinates (1, 1)).

the consequences of such buffer size changes in terms of hardware complexity
and power consumption.

6 Related Work

Code Quality Analyzer (CQA) [2], to which we compared UFS throughout this
chapter, is the tool the closest to UFS that we know of: both analyze loops
at a binary / assembly level, rely on purely static inputs and have a special
emphasis on L1 performance. They actually both use the MAQAO framework to
generate their inputs. CQA works in terms of bandwidth, which it assumes to be
unimpeded by execution hazards. As its name suggests, it assesses the quality of
targeted loops, for which it provides a detailed bottleneck decomposition as well
as optimization suggestions and projections. UFS differs by focusing solely on
time estimations, accounting for dispatch inefficiencies and limited buffer sizes.
It does so by simulating the pipeline’s behavior on a cycle-accurate basis, adding
accuracy at the cost of speed. Finally, CQA supports more microarchitectures
than UFS.

IACA [1] works similarly to CQA, and estimates the throughput of a target
code based on uop port binding and latency in ideal conditions. It can target
arbitrary code sections using delimiting markers, while both CQA and UFS only
operate at the loop level. It does not account for the hazards UFS was tailored to
detect, and we consequently expect it to be faster but less accurate. Like CQA,
IACA also supports more microarchitectures than UFS.

Zesto [18, 19] is an x86 cycle-accurate simulator built on top of
SimpleScalar [20] and implements a very detailed simulation of the out-of-order
engine similar to that of UFS. However, as with other detailed simulators like [21],
the approaches are very different: it works as a regular CPU simulator and han-
dles the semantics of the simulated program. Its simulation scope is also much
wider, with a detailed simulation of branch prediction, caches and RAM. UFS
focuses solely on the execution pipeline, and particularly the out-of-order en-
gine. It disregards the semantics, and targets loops directly with no need for
contextual information (such as register values, memory state, etc.), making it
considerably faster due to both not having to simulate regions of little inter-
est and simulating significantly fewer things. Furthermore, UFS targets Sandy
Bridge, Ivy Bridge and Haswell, while to the best of our knowledge Zesto only
supports older microarchitectures.

Very fast simulators exist, but typically focus on different problematics. For
instance, Sniper [22, 23] uses both interval simulation (an approach focusing
on miss events) and parallelism to simulate multicore CPUs efficiently. As said
events (cache misses and branch mispredictions) are irrelevant in the cases tar-
geted by UFS (memory accesses always hit L1, loops have no if statements and
have large numbers of iterations), the use cases are completely disjoint.

UFS is to our knowledge the only model targeting binary / assembly loops
that both disregards the execution context and accounts for dispatch hazards
and limited out-of-order resources.

7 Future Work

Evaluating the impact of unmodeled hardware constraints would be interesting
to determine whether or not implementing them in UFS could be profitable.
Such constraints include writeback bus conflicts and partial register stalls.

The impact of simulating fewer loop iterations should also be studied, as our
current default value of 1000 may be unnecessarily high and time consuming.

As our base UFS model is aimed at Sandy Bridge, we could easily construct
models for incremental improvements such as Ivy Bridge and Haswell on top of it.
However, a validation work is necessary to evaluate their respective fidelities, and
see if more microarchitecture-specific rules have to be implemented. Expanding
the model to support further “Big Core” microarchitectures (e.g. Broadwell,
Skylake...) would also be of interest.

The idea of Uop Flow Simulation can be applied to vastly different microar-
chitectures (such as the one used in Silvermont cores, or even ARM CPUs), and

could have interesting applications beyond performance evaluation tools. For in-
stance, its working out of context means it could easily be used by compilers to
better evaluate and improve a generated code’s quality.

In terms of codesign, UFS models could be used to quickly estimate the im-
pact of a microarchitectural change on thousands of loops in a few minutes. Cou-
pling this modeling technique with a bandwidth-centric fast-simulation model
such as Cape [3] would allow for non-L1 cases to be handled efficiently as well.

8 Conclusion

We demonstrated UFS, a cycle-accurate loop performance model allowing for
the static, out-of-context analysis of assembly loops. It takes into account many
of the low-level details used by tools like CQA or IACA, and goes further by
estimating the impact of out-of-order resource sizes and various pipeline haz-
ards. It can also be used to evaluate how a loop would behave given different
microarchitectural parameters (such as different out-of-order buffer sizes or load
latencies).

Our Sandy Bridge UFS prototype shows that UFS is very accurate and ex-
poses formerly unexplained performance drops in loops from industrial appli-
cations and in vitro codelets alike. Furthermore, it offers very high simulation
speeds and can serially process dozens of loops per second, making it very cost
effective.

9 Acknowledgements

We would like to thank Gabriel Staffelbach (CERFACS) for having provided our
laboratory with the AVBP application, as well as Ghislain Lartigue and Vincent
Moureau (CORIA) for providing us with YALES2.

We would also like to thank Mathieu Tribalat (UVSQ) and Emmanuel Os-
eret (Exascale Computing Research) for performing and providing the in vivo
measurements we used to validate UFS on the aforementioned applications.

This work has been carried out partly at Exascale Computing Research lab-
oratory, thanks to the support of CEA, Intel, UVSQ, and by the PRiSM labora-
tory, thanks to the support of the French Ministry for Economy, Industry, and
Employment through the COLOC project. Any opinions, findings, and conclu-
sions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the CEA, Intel, or UVSQ.

References

[1] Intel: Intel architecture code analyzer (IACA) (Jun 2012), https://software.

intel.com/en-us/articles/intel-architecture-code-analyzer

[2] Oseret, E., et al.: CQA: A code quality analyzer tool at binary level. HiPC ’14
[3] Noudohouenou, J., et al.: Simsys: A performance simulation framework. RAPIDO

’13, ACM (2013)

[4] Palomares, V.: Combining Static and Dynamic Approaches to Model Loop Per-
formance in HPC. Ph.D. thesis, UVSQ (2015), Chapter 7. Uop Flow Simulation.

[5] The AVBP code http://www.cerfacs.fr/4-26334-The-AVBP-code.php

[6] YALES2 public page http://www.coria-cfd.fr/index.php/YALES2

[7] MAQAO: Maqao project. http://www.maqao.org (2013)
[8] Fog, A.: Instruction tables: Lists of instruction latencies, throughputs and micro-

operation breakdowns for intel, amd and via cpus (Mar 2015), http://www.agner.
org/optimize/instruction_tables.pdf

[9] Djoudi, L., et al.: The design and architecture of maqao profile: an instrumentation
maqao module. In: EPIC-6. p. 13. IEEE (2007)

[10] Palomares, V.: Combining Static and Dynamic Approaches to Model Loop Per-
formance in HPC. Ph.D. thesis, UVSQ (2015), Appendix A: Quantifying Effective
Out-of-Order Resource Sizes, Appendix B: Note on the Load Matrix.

[11] Intel: 2.2.2.4: Micro-op queue and the loop stream detector (LSD). Intel 64 and
IA-32 Architectures Optimization Reference Manual (Sep 2014)

[12] Intel: 2.2.4: The execution core. Intel 64 and IA-32 Architectures Optimization
Reference Manual (Sep 2014)

[13] Intel: 3.5.2.4: Partial register stalls. Intel 64 and IA-32 Architectures Optimization
Reference Manual (Sep 2014)

[14] Paoloni, G.: How to benchmark code execution times on intel ia-32 and ia-64
instruction set architectures. Intel Corporation, September (2010)

[15] Koliäı, S., all: Quantifying performance bottleneck cost through differential analy-
sis. In: Proceedings of the 27th international ACM conference on supercomputing.
pp. 263–272. ACM (2013)

[16] Moureau, V., et al.: From large-eddy simulation to direct numerical simulation of
a lean premixed swirl flame... Combustion and Flame (2011)

[17] Press, W.H., et al.: Numerical recipes: The art of scientific computing (1992)
[18] Loh, G.H., et al.: Zesto: A cycle-level simulator for highly detailed microarchitec-

ture exploration. In: Performance Analysis of Systems and Software, 2009. ISPASS
2009. IEEE International Symposium on. pp. 53–64. IEEE (2009)

[19] Loh, G.H., Subramaniam, S., Xie, Y.: Zesto (Jan 2009), http://zesto.cc.

gatech.edu

[20] Burger, D., Austin, T.M.: The simplescalar tool set, version 2.0. ACM SIGARCH
Computer Architecture News 25(3), 13–25 (1997)

[21] Binkert, N., et al.: The gem5 simulator. ACM SIGARCH Computer Architecture
News 39(2), 1–7 (2011)

[22] Carlson, T.E., et al.: Sniper: exploring the level of abstraction for scalable and
accurate parallel multi-core simulation. In: SC. p. 52. ACM (2011)

[23] Heirman, W., et al.: Sniper: scalable and accurate parallel multi-core simulation.
In: ACACES-2012. pp. 91–94. HiPEAC (2012)

