
Combining static and dynamic analysis to guide
PGO for HPC applications: a case study on

real-world applications
Youenn Lebras

University of Versailles
Versailles, France

Email: youenn.lebras@uvsq.fr

Andres S. Charif-Rubial
PeXL

Versailles, France
Email: ascr@pexl.eu

William Jalby
University of Versailles

Versailles, France
Email: william.jalby@uvsq.fr

Abstract—Modern high performance processor architectures
tackle performance issues by heavily relying on increased vector
lengths and advanced memory hierarchies to deliver high perfor-
mance. This stresses the importance of data access optimization
and efficient usage of the underlying hardware. Developers usu-
ally trust compilers to automatically address these performance
issues, but unfortunately, compilers deploy static performance
models and heuristics which, sometimes, remain conservative
or even fail in the worst case. Moreover, manual optimization
of production HPC codes is not only impractical, but impos-
sible when having to manage multiple architecture dependent
transformations. One way to assist compilers is to use Profile
Guided Optimization (PGO). It allows the use of feedback data
from dynamic profiling using a representative training dataset,
for a given target application, enabling the compiler to refine
its optimization choices and enhance application performance.
But, PGO does not always consider certain metrics and is rarely
aggressive enough regarding metric data collection. This bounds
the transformation space and limits the compiler’s ability to
perform further optimizations. An additional option is to provide
compilers with user guided assistance in order to enlarge the
transformation space (i.e. specialization) and enhance the quality
of optimizations.

In this paper, we introduce ASSIST, a semi-automatic source-
to-source manipulation taking advantage of static and dynamic
profiling data produced by performance analysis tools. We
demonstrate on real industrial class applications that by combin-
ing both static and dynamic analyses and by deploying simple
transformations, ASSIST generates similar (and in some cases
higher) performance speedups than Intel PGO. Furthermore,
combining ASSIST and PGO allows to go a step further,
increasing the performance substantially.

Index Terms—automatic, source-to-source, optimization, HPC,
FDO

I. INTRODUCTION

Modern high performance processor architectures rely heav-
ily on increased vector lengths and advanced memory hierar-
chies to deliver high performance. This stresses the importance
of data access optimization and efficient usage of the underly-
ing available vector capabilities. Contemporary compilers are
first to address these performance issues. Unfortunately, they
suffer from two major limitations: first, the large size of the
transformations space; second, the lack of solid guidelines
(cost model) regarding the application of a transformation

which is almost entirely based on static analysis feedback,
rendering the transformation unrealistic in some cases.

With their knowledge of the code structure and using
performance analysis tools capable of characterizing code
behavior, developers may be able to guide the compiler to
identify adequate transformations and their related parameters.
They can annotate the source code either through custom
directives [9], [24], [25], comments [12], [26] or by using
Domain Specific Language (DSLs) [5], [10], [15], [18], [6].
Directives are simple but less powerful when compared to
DSLs that are capable of handling very advanced patterns with
additional complexity. From the point of view of a regular
application developer, directives provide the best compromise
(expressiveness vs. complexity). However, the resulting source
code may end up bloated by extensive optimization transfor-
mations (i.e. tiling), handling special cases, or even useless
modifications sometimes. This can worsen when users need to
manage multiple target architectures (e.g. x86, ARM, ...). Also,
most of these source code edits are the responsibility of the
developers and will inevitably impact productivity and increase
the risk of inserting useless or detrimental annotations, or even
worse: bugs.

A very promising approach to relieve developers from this
tedious annotation task is to use Feedback Data Optimization
(FDO), also known as Profile Guided Optimization (PGO).
Feedback data can be defined as any kind of information
that can be extracted from a code and used to characterize
its performance. pgo [21] and/or autofdo [11], is embedded
within most production compilers: Intel, GCC, and, more
recently, LLVM). A typical FDO process encompasses three
steps: 1) producing an instrumented binary using a special
compiler flag or multiple flags; 2) executing the binary in
order to obtain a profile (feedback data); 3) using the ob-
tained feedback data during a second compilation process to
produce a new version that is expected to be more efficient.
However, in the current FDO implementations the amount of
information gathered at run time is limited and the available
transformations space is fairly small. Both these limitations
have a strong negative impact on the efficiency of the applied
transformations. In this paper, we demonstrate that by being

more aggressive on information gathering and by combining
static and dynamic information to refine the quality of trans-
formations, substantial performance gains can be obtained.
This paper presents ASSIST, an Open Source user guided
source-to-source manipulation tool that allows automatic code
transformations based on static and dynamic feedback. The
tool aims at providing assistance with respect to productivity
and performance efficiency. Our main contributions are the
following:

• A novel study of how and when well-known transforma-
tions allow a performance gain on real-world HPC appli-
cations using a novel FDO source-to-source approach.

• A novel semi-automatic and user controllable method
where, at different steps of the process, users can guide
transformations using their expertise by choosing be-
tween different optimizations based on profiler results; if
users deem a certain proposed optimization unnecessary,
they can tell the tool to discard it.

• An FDO tool that combines both dynamic and static
analysis information to guide code optimization while
most other existing tools only use dynamic feedback.

• A verification system using a static analysis that checks
if the proposed transformations do not have a negative
impact on performances.

• A more flexible alternative to the compiler’s PGO /
FDO modes. Compilers that allow PGO search through
a limited space and only perform dynamic analysis.
Our method explores a larger search space in terms of
performance analysis and is much more efficient, but its
time overhead can be larger due to the large amount of
gathered performance metrics. Last but not least we will
show that our approach can be combined to PGO.

This paper is structured as follows: Section II provides an
overview of our approach. Section III describes the design
and implementation of the tool (ASSIST). Section IV presents
the transformations provided by our tool and how they are
triggered. Section V presents a study of experimental results.
Section VI covers related work. And finally, section VII
covers conclusion and future work.

II. BACKGROUND AND GOALS

ASSIST is part of the MAQAO tool-set [3] which fo-
cuses on performance evaluation and optimization of binary
applications. The tool-set features multiple modules aiming
at primarily pinpointing performance issues and providing
users with hints or optimization propositions. MAQAO works
at binary level (ELF, PE,...), taking advantage of evaluating
low level constructs later to be executed on the underlying
hardware. It is able to link those constructs to source code
using debug information when available. Unfortunately, binary
analysis is not always self explanatory to programmers and
requires very good knowledge of architectural details which,
in fact, are not always necessary to perform source level
optimizations. When performing optimizations by hand on
real-life applications, programmers face three main concerns:

Fig. 1. Overview of the ASSIST process. The user decides what static and
dynamic analyses have to be performed.

1) selecting which transformations to apply and in which
order;

2) avoiding having to perform tedious or error-prone man-
ual transformations.

3) minimizing code bloating due to transformations such
as hand-coded (function/loop) specialization;

Our approach aims at enabling developers to improve their
application’s performance by providing a semi-automatic tool
that helps in the selection of transformations, and then, under
user control, implements them automatically.

III. DESIGN AND IMPLEMENTATION

In order to achieve the goals listed in the previous section,
ASSIST must handle source code manipulation and harness
the metrics and analyses produced by MAQAO tools. In
this section, we present an overview of ASSIST and its
infrastructure.

A. Overview

ASSIST is an open source semi-automatic FDO framework
based on the ROSE [23] compiler infrastructure and integrated
into the MAQAO tool-set. Figure 1 presents an overview of
the main steps involved in the tool’s operation. The following
section provides more details on transformations and how to
trigger them.

ASSIST provides expert programmers, as well beginners in
optimization, a simple and flexible interface that offers three
approaches to transform a source code. The first interface
makes use of special directives (added by the user above a
loop or a function) requesting from ASSIST to apply a specific
code transformation. The second interface uses a script file
instead of direct source file annotations. The third interface
allows ASSIST transformations to be selected and triggered
using profiling information gathered through static and dy-
namic performance analyses. Available analyses are based on
CQA [4] (code quality analysis), VPROF [13] (value profiling)
and DECAN [16] (binary modification). Users can select the
metrics that will first be gathered by the MAQAO analyses
modules and then automatically trigger ASSIST transforma-
tions. Feedback data can be coupled with user directives
to guide transformations. During the modification process,
the source code is parsed and transformed into an abstract

syntax tree (AST) that ASSIST will transform according to
user directives and/or profiling results. As a semi-automatic
tool, ASSIST can interact with the user during the AST
modification and request information on potential issues with
certain transformations (i.e. vectorization). We adopted the
semi-automatic approach because it allows users to remain
in control of the optimization process by evaluating the cost
and the validity of the transformations. The tool provides cost
estimates for the transformations, thus, users can assess and
decide whether a transformation is worth applying or not. At
the end of the process, the modified AST is parsed to generate
a modified source file.

B. Compiler Infrastructure

Applying transformations to a given source code requires a
set of front-ends. In our case, we give priority to HPC scientific
applications, hence the focus on main HPC programming
languages. What we would like to achieve with ASSIST
using source-to-source transformations is independence from
compiler-specific intermediate representations (IR) and direc-
tives.

Though there are many available source-to-source transfor-
mations APIs [17], [18], [8], [10], [20], we designed ASSIST
around the AST infrastructure of the Rose Compiler Project.
The Rose Compiler Project provides a rich Open Source
(modified BSD license) API that suits our requirements.

IV. TRANSFORMATIONS: WHAT AND HOW TO TRIGGER
THEM

The main goal of ASSIST is to provide a better global
strategy for selecting and triggering/applying standard code
transformations. The search space for standard transformations
is already large and a proper strategy is essential. Our approach
will be to work on a per transformation basis determining what
static and dynamic information need to be collected to assess
whether the transformation is worthwhile. The assessment
is made available to the user who will eventually decide
to allow the tool to apply the transformation or not. This
work does not propose new code transformations or new
optimizations but presents customized standard optimizations,
such as short vectorization, which aims at exploiting some key
code characteristics: loops with very small trip counts.

A. Loop Count Transformation (LCT)

Knowing the loop iterations count enables to perform very
efficient specialization. This can be exploited in many different
ways through including compiler directives. Intel compilers
offer the ability to specify a loop count (min, max, avg)
directive. With such directives, the compiler will generate
specific variants (with respect to unrolling, vectorization and
prefetching) taking into account all the information the direc-
tive entails.

VPROF, the MAQAO value profiler is run on each loop and
records, among other metrics, the minimum, maximum, and
average number of iterations allowing ASSIST to automati-
cally insert the corresponding directives. This transformation

is considered the least aggressive and it allows to guide the
compiler’s decisions. It can therefore be used in addition to
the usual optimizations of the compiler, PGO included. Section
V shows the results obtained when combining the Intel PGO
and the LCT where no case of performance degradation, due
to optimization combination, was observed. On the contrary,
both techniques tend to complete each other.

B. Tile & strip mine

The tile and the strip mine transformations can allow for
substantial improvement in data locality. Using MAQAO,
DECAN [16] generates several binary variants (DL1, REF,
...), then runs and compares them. For this use case, ASSIST
uses the variant named DL1 in which all load and store
memory operands are modified to target the same address
across loop iterations. Thus, all data accesses (except for the
first few iterations) will surely result in L1 hits. Comparing
DL1 timings with original timings allows to measure precisely
the impact of memory accesses, particularly in case the of
”Perfect Blocking”. The DL1 variant can be further refined
by only targeting loads and stores on the same array in order
to determine whether restructuring the array is worthwhile.

C. Specialization

Specialization is the process of creating particular versions
of the same code by explicitly considering specific constant
values for one or more variables. Specialization can be a very
efficient transformation. Particularly, because it opens room
for other transformations to be applied efficiently.

In the case of function specialization we will usually
want to target specific value combinations. There are two
main difficulties related to specialization: 1) detecting which
variables are interesting to specialize and their values, and
2) minimizing the number of variables to specialize while
keeping a generic code and having good performance results.
Similarly to LCT, specialization can be triggered by using
VPROF data. In addition to providing loop trip count, VPROF
can profile specific variables to detect the most used values of
these variables. To know which variable has to be profiled,
we use ASSIST as a static analyzer. Either ASSIST focuses
on functions and it will profile function parameters, or it
focuses on loop nests and it will profile variables detected as
interesting to specialize. It will be mostly variables governing
conditionals and loop bounds. ASSIST can then insert calls to
the VPROF library for the interesting variables. The resulting
code will be compiled and executed to obtain desired values.
Finally, specialization is triggered using results from the value
profiling. Specialization will be essentially triggered on non
uniform value distribution. A particular interest will be put on
variables with ”dominating” single values.

D. Short vectorization transformation (SVT)

The short vectorization transformation allows to improve
vectorization of a loop with a very small trip count (typically
less than 16). Such cases can be detected using MAQAO CQA
which statically analyses loops and computes vectorization

double *a, *b;
...
#pragma MAQAO SHORTVEC=AVX2
for (int i=0 ; i < 7; i++) { a[i] += b[i]; }

(a) Before short vectorization

double *a, *b;
...
#pragma simd
#pragma vector unaligned
for (i = 0; i < 4; i++) { a[i] += b[i]; }

#pragma simd
#pragma vector unaligned
for (i = 4; i < 6; i++) { a[i] += b[i]; }
a[6] += b[6]

(b) After short vectorization

Fig. 2. Example of short vectorization on x86 64 performed by ASSIST

efficiency coupled with VPROF to obtain the trip count of that
loop. To overcome this vectorization issue, ASSIST use the
SVT which performs the following steps: force the compiler
to vectorize the loop using the SIMD directive; prevent peeling
code from being generated using the vector unaligned direc-
tive; and adapt the number of iterations to the vector length.
Figure 2 illustrates this transformation.

V. EXPERIMENTS

In this section we present results obtained using ASSIST
and compare them with Intel compiler PGO mode (denoted
IPGO). Intel compilers are neither open source nor free, but
they provide the best performance in our tests (compared
to GCC and LLVM). For IPGO, the use of profiling data
enables some specific optimizations but can also modify
the behavior of other optimizations: 1) using feedback data
on function entry counts. Function grouping is done to put
hot/cold functions adjacent to one another; 2) value profiling
of indirect and virtual function calls is done to specialize
indirect function calls for a common target; 3) The interme-
diate language is annotated with edge frequencies and block
counts which are then used to guide a lot of the optimization
decisions made by other passes of the compiler. Our goal is
not to ”mimic” IPGO, but rather to present a complemen-
tary approach which goes beyond the observed limitations.
All the measurements presented below were gathered on an
Intel(R) Skylake SP based machine (Intel Xeon Platinum 8170
CPU@2,10GHz) with Intel compiler version 17.0.4. Multiple
executions (exactly 31) were performed to reach statistical
stability and avoid noisy measurement data. Also, this section
presents experimental results of transformations provided by
ASSIST based on feedback data and user insight. This study
is application-centric, we have looked for an approach to get
a good performance gain at minimal cost; we start from what
the application needs, based on what MAQAO profilers return,
to trigger the right transformation for each application and

AVBP AVBP AVBP Yales2 Yales2
NASA TPF SIMPLE 3D Cylinder 1D COFFEE

Nb loops 149 173 158 162 122
TABLE I

NUMBER OF LOOPS PROCESSED BY ASSIST LCT FOR EACH APPLICATION
AND TEST CASE.

thus limit the search space and avoid blindly testing different
useless transformations.

A. Application pool

Four full industrial class applications were used to test
our approach: YALES2 [7], a numerical simulator of turbu-
lent reactive flows.ASSIST has been tested on two of their
datasets named ”3D Cylinder”, a pure CFD computation,
and ”1D COFFEE”, a combustion computation. The applica-
tion is written in Fortran 2003 and contains approximately
276 000 lines of code. AVBP [2], a parallel CFD code
developed by CERFACS that solves the three-dimensional
compressible Navier Stokes equations on unstructured multi-
element grids.ASSIST has been tested on three representative
datasets namely: SIMPLE (helicopter chamber demonstrator
combustion simulation), NASA (NACA blade simulation) and
TPF (large flow simulation). The application is written in
Fortran 95 and contains approximately 275 000 lines of code.
ABINIT [1], a package allowing users to find the total energy
charge density and electronic structure of systems made of
electrons and nuclei.The application contains approximately
807 000 lines of Fortran 90 code. Convolutional Neural
Network (CNN), the state-of-art Deep Neural Network for
image recognition.The CNN code refers to the one used in [19]
and the layers used are the GoogleNet V1. The convolution
technique consists of executing all CNN layers one after the
others with different filter sizes (1x1, 3x3 and 5x5). This
codelet is written in C and contains 450 lines of codes.

B. Impact of loop value profiling

Our first FDO optimization uses loop trip counts informa-
tion obtained by value profiling using MAQAO VPROF. When
loops exhibit a complex control flow due to multi-versioning,
knowledge of the trip count can help the compiler simplify the
decision tree. Figure 3 presents speedups obtained with LCT,
IPGO and the combination of both for each application/dataset.
For these applications, the combination of LCT and IPGO
reach a speed up of 14% for a sequential YALES2 run with
the 3D Cylinder dataset. To ensure that the optimization is
still efficient in parallel, these figures present the speedup of
the LCT, IPGO and both.In most cases, the speedup decreases
when the number of processes increase. This is due to the
communications which proportionally increases (see MPI time
plots) at the same time and take most of the execution time.
On the contrary, for Yales2 with 1D COFFEE dataset, an
increasing speedup according to number of processes can be
observed. This is due to an Intel compiler optimization on an
Intel library function that performs a copy of a string used
for all communications. The higher the number of communi-
cations, the more often this function is called. By providing

Fig. 3. Histograms: impact (speedup) of ASSIST LCT, IPGO and combina-
tion of both compared with original version for the same number of threads of
two datasets Yales2 (Higher is better). Error bars represent original version /
minimum speedup and original version / maximum speedup. Plots: Percentage
of execution time spent in MPI.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 20 40 60 80 100 120 140 160

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

Number of loops processed by ASSIST

YALES2 - 3D CYLINDER

Fig. 4. Cumulated speedup versus number of loops processed by ASSIST,
sorted by coverage, on Yales2 using the 3D Cylinder test case.

the compiler with iteration count of loops containing this
function, the compiler can perform advanced optimizations.
After applying ASSIST LCT, we used our verification system
based on CQA to statically verify that the compiler did not
generate a worse performing code. The verification system
is not yet totally implemented, so we only apply it on hot
loops and confirm that the transformation does not downgrade
performances. The strength of this transformation comes from
the number of loops processed by ASSIST; as shown on
figure 4, the first twenty loops provide more than fifty percent
of the total speedup gain but 130 loops are necessary to reach
a maximum speedup.

This study shows that providing the compiler with loop
trip count feedback (minimum, maximum and average values)
results in significant performance gains. When compared with
IPGO, performance gains are lower but we should be keep
in mind that IPGO and ASSIST LCT are using different
optimizations. The most important point is that both can be
combined and their combination leads to higher gains.

C. Impact of specialization

The following examples show how specialization alone, or
coupled with other transformations, can provide a significant
performance gain.

1) AVBP: In this example, MAQAO indicates that in the
ten most time-consuming functions there are loop nests with
poor vectorization efficiency and a low trip count for innermost
loops for the three datasets: NASA, TPF and SIMPLE. AS-
SIST has been used to couple both specialization and SVT on
these functions. Loop and function specializations have been
first applied separately. Then, the SVT has been performed on
the most efficient version. Figure 5 only presents results on
the dataset SIMPLE because it is the most relevant.

Figure 6 compares the speedup ratios of each version (LCT,
IPGO, LCT + IPGO and SVT). For the TPF dataset the
SVT allows to gain as much as the combination of LCT and
IPGO. But for the the NASA dataset the best of LCT+IPGO
only allows to reach almost half of the speedup obtained
with SVT for one MPI thread. It is more blatant with the
SIMPLE dataset, the speedup of LCT and IPGO does not
reach more than 2% individually and 4% when combined,
contrary to ASSIST SVT which reaches a 12% speedup for
the SIMPLE dataset. When the compiler fails to vectorize a
loop properly, SVT is very effective given that it explicitly
exposes a simpler loop structure with no peel or tail loops to
the compiler. There are two main reasons why the compiler
does not vectorize: first, the dependence analysis reveals
dependencies preventing vectorization, and second, the cost
model used by the compiler gives estimates that vectorization
is not beneficial. On other cases, compiler performed an outer
vectorization on loops with a small number of iterations, CQA
detects a bad ”vectorization efficiency” on these loops. CQA
offers multiple vectorization metrics such as vectorization-
ratio or a vector-efficiency ratio on loads, stores, etc. allowing
to assess the performance level obtained. In our case, we use
these metrics to provide ASSIST with quality estimates of the
vectorization carried out by the compiler to perform or not
a good vectorization and finally to trigger the transformation.
The short vectorization transformation forces the compiler to
vectorize small loops with a small number of iterations; the
compiler also fully unrolls these loops. After transformations,
we use our verification system with CQA to validate the
transformations. Indeed, before transformations, CQA detects
only 33% of vectorization and after, CQA reports the loop as
fully vectorized.

To apply SVT, loop bounds have to be known. To set these
bounds, we specialize functions on one side, and loops on
the other; and apply the SVT on the better specialization for
each function. Figure 5 presents speedups obtained at each
step to show their individual impact, we add ASSIST LCT
and IPGO for comparison. We observe that SVT can rise to
up to 2.6x speedup while the loop and function specializations
only achieve, at best, a speedup of 1.5x. Performing only loop
or function specialization may be counterproductive in some
cases because of the induced complexity of the control flow, if

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

laxw
e

m
ass-product

central-nv

central

balance-cor

gather-o-cpy

scatter-o-sub

scatter-add

scatter-o-add

grad-4obj

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

ASSIST LCT

IPGO
ASSIST function specialization only

ASSIST Loop specialization only

ASSIST SVT on best specialization

Fig. 5. Speedups by function before and after applying transformations with
ASSIST (SVT, function/loop specialization, LCT) and IGO compared with
the original version (higher is better) on AVBP using the SIMPLE test case
(sequential version).

loop # ite. # ite. # ite. Potential Coverage
id min max avg speedup

16182 4 4 4 4.00 11.25
13752 4 4 4 2.67 3.46
13692 4 4 4 4.00 2.98
13902 3 3 3 6.67 2.51
13641 4 4 4 4.00 1.52
2587 5 5 5 2.00 0.97
2690 4 4 4 6.40 0.61
2551 5 5 5 8.00 0.37
2723 5 5 5 2.00 0.35
2308 3 3 3 8.00 0.33

TABLE II
CQA & VPROF METRICS OF LOOPS OF THE HOTSPOT FUNCTIONS OF

AVBP, WITH THE SIMPLE DATASET, BEFORE APPLYING THE SVT.

no further induced optimizations are possible. Table II presents
metrics from CQA and VPROF of loops before applying the
SVT; it is these metrics that motivate our choice to use SVT.
SVT only has been performed on AVBP because the other
applications have different bottlenecks or because SVT would
be counterproductive. For example, in case of Yales2, SVT has
not been applied because CQA indicated that vectorization will
lead to the use of scatter/gather instructions which are costly
and make vectorization not beneficial.

2) ABINIT: In this example, ASSIST is used as a semi-
automatic tool and is fully driven by the user. At first, a full
profiling of the code is performed followed by value profiling
on one of the main hotspots of the application. Three input
parameters were found to be of importance.

First, the function can be called with two different types of
input data, either real-valued data or complex-valued data. A
given test case will almost exclusively use one or the other. As
those data are expressed as an array with one or two elements
in a part of the code, specialization of this value simplifies
address computations and vector accesses by making the stride

Fig. 6. Histograms: Speedups of ASSIST SVT & LCT, IPGO and ASSIST
LCT + IPGO compared with the original version (higher is better) on three
AVBP datasets. Plots: Percentage of execution time spent in MPI.

a compile-time constant rather than a dynamic value.
Second, multiple variants of the algorithm are implemented

in the function. Which exact variant is used, depends on two
integer parameters. Again, a given test case is usually heavily
biased towards a small subset of possible cases. Specialization
to one case removes multiple conditionals. As the loop nests
for a given case appear in different branches, this removal of
conditionals exposes the true dynamic chaining of loop nests
to the compiler with no intervening control-flow break.

Once specialized with ASSIST, the function becomes much
simpler to study. A study using MAQAO DECAN indicated
that a large array is updated in its entirety inside a loop, a bad
pattern for cache usage where tiling would be very beneficial.
Loop tiling makes it possible to update the array by blocks,
and to only scan and update the array once. While this work
would not be particularly difficult to do by hand, more than
two dozen variants of the loop nest with similar properties
appear in the original function. As the transformed loop adds
an extra loop to the nest, this complicates indexes and requires
a remainder loop. It is much easier and much more reliable
to automate the transformation process. Speed up results are
shown in figure 7. We added IPGO to show the potential
of our approach. Specialization offers a small gain but the
dominant issue is still the time spent in the critical loop nest.
Adding tiling offers a large gain of almost 1.8x in total by
significantly reducing the memory bandwidth of the critical
loop nest. Despite the complexity of the original function,
ASSIST should make it easy to apply the same transformations
to other possible uses of the function for other test cases of
the ABINIT code.

Fig. 7. ABINIT - Ti-256 - Speedups of IPGO, ASSIST LCT, specialized with
ASSIST, specialized and tiled with ASSIST compared to the original version

3) CNN: In this example, our target loop nest is composed
of seven nested loops and ASSIST is used in two steps: first, as
an automatic tool, using the automatic specialization to detect
variables that can be automatically specialized. In this case,
ASSIST found that by specializing variables for certain values,
it is possible to set bounds of the two innermost loops of the
loop nest and also possible to remove the if statements that are
in these two loops; then, as users, we know that two variables
- which are computed inside the loop nest - only have three
possible values for most layers. These are calculated within the
loop nest which prevents the previous automatic specialization.
After both specializations, the loop nest increased from 30
lines to 922 lines to handle all cases. This transformation can
hardly be manually done without making mistakes.

Figure 8 presents speedups after the two specializations
compared to the original version. Specializations offer a gain
between 1.4x and 5.4x on all tested layers by creating multiple,
less complex, versions of the loop nest that the compiler can
more easily optimize. Layers used are those with a (1x1) and
(3x3) filters. IPGO does not appear on this figure because it
does not gain any performance.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

L
a
y
e
r2

L
a
y
e
r3

L
a
y
e
r5

L
a
y
e
r6

L
a
y
e
r8

L
a
y
e
r1

0

L
a
y
e
r1

1

L
a
y
e
r1

3

L
a
y
e
r1

4

L
a
y
e
r1

5

L
a
y
e
r1

7

L
a
y
e
r2

1

L
a
y
e
r2

3

L
a
y
e
r2

8

L
a
y
e
r3

0

L
a
y
e
r3

3

L
a
y
e
r3

4

L
a
y
e
r3

5

L
a
y
e
r3

7

L
a
y
e
r4

1

L
a
y
e
r4

5

L
a
y
e
r4

7

S
p
e
e
d
u
p
 (

h
ig

h
e
r

is
 b

e
tt

e
r)

ASSIST specialization

Fig. 8. Convolution Neural Network - Speedup of GoogleNet V1 layers after
specialization, compared to the original version.

VI. RELATED WORK

The originality of the approach presented in this paper lies in
the combination of both source-to-source transformations with

user guidance and FDO approaches. There are several tools
allowing to perform source-to-source transformations [12], [5],
[10], [14], [9], [22]. These tools provide specific transforma-
tions (i.e. adding parallelism) or provide APIs to let users
define their own transformations. Very few of these tools use
static and dynamic information to perform transformations.
Usually, they rely on empirical optimizations by creating mul-
tiple variants and executing each one before choosing the best
version. Our approach opts for a cheaper and more straight-
forward path using FDO and takes advantage of static and
dynamic analyses. That way we can assess the quality of the
code generated by the compiler (using CQA) and get execution
behavior metrics. The only tools performing transformations
based on static and dynamic information are FDO tools such
as PGO(e.g. Intel, GCC, LLVM) or AutoFDO [11] (available
for GCC and LLVM). AutoFDO is the name of an in-house
FDO deployment system proprietary to Google. Compared to
PGO, AutoFDO exploits hardware counter profiles. In both
cases feedback/profile data is injected early in the intermediate
representation of the compiler so that all the optimization
passes can take advantage of it. Our approach aims at helping
modern compilers by not injecting data using a specific format,
but rather by working at source level to avoid being compiler
dependent. From a performance point of view, both approaches
are complementary.

VII. CONCLUSION AND FUTURE WORK

We have shown the efficiency of our approach: how and
when already known transformations allow to gain speedup
on real-world HPC applications by using static and dynamic
feedback data or user guidance. Though no new optimization
techniques are developed, new combinations of transforma-
tions are shown to be worthwhile. Moreover, given that our
work is at source-level, our approach allows to remain portable
across compilers and architectures.

The tool presented in this article provides the foundation
for a more complete semi-automatic tool which will combine
more of FDO and user knowledge. As future work we plan
to harness all the available metrics and dynamic analysis
existing in MAQAO including those using hardware counters
to perform and automate more optimizations. We also plan
to improve the specialization by searching where we can
”backtrack” in a loop nest to specialize. For example, if we
detect that the innermost should be specialized, we may want
to detect if we can move up the specialization in the loop
nest without being hindered by an assignment which affects
a variable to specialize.

ACKNOWLEDGEMENTS

This work was carried out within ECR (Exascale Computing
Research). The authors thank INTEL, CEA and UVSQ for
their financial support.

REFERENCES

[1] ABINIT. https://www.abinit.org/.
[2] AVBP. http://www.cerfacs.fr/avbp7x/.
[3] D. Barthou, A. Charif-Rubial, W. Jalby, S. Koliai, and C. Valensi.

Performance tuning of x86 openmp codes with maqao. In Parallel Tools
Workshop, pages 95–113, Desden, Germany, Sept. 2009.

[4] A. Charif-Rubial, E. Oseret, J. Noudohouenou, W. Jalby, and G. Lar-
tigue. Cqa: A code quality analyzer tool at binary level. In HiPC, pages
1–10. IEEE Computer Society, 2014.

[5] C. Chen, J. Chame, and M. Hall. Chill: A framework for composing
high-level loop transformations. 2008.

[6] J. R. Cordy. Source transformation, analysis and generation in txl.
In Symposium on Partial Evaluation and Semantics-based Program
Manipulation, PEPM ’06, pages 1–11, New York, NY, USA, 2006.
ACM.

[7] Coria. http://www.coria-cfd.fr/index.php/YALES2.
[8] Dave and al. Cetus: A source-to-source compiler infrastructure for

multicores. In Computer, pages 36–42, 2009.
[9] R. Dolbeau, S. Bihan, and F. Bodin. Hmpp: A hybrid multi-core parallel

programming environment. In (GPGPU 2007, volume 28.
[10] C. L. et V. Adve. Dms/spl reg: program transformations for practical

scalable software evolution. In ICSE’04., pages 625–634. IEEE.
[11] Google. https://github.com/google/autofdo.
[12] A. Hartono, B. Norris, and P. Sadayappan. Annotation-based empirical

performance tuning using orio. In ISPA 2009, pages 1–11.
[13] S. Henry, H. Bollore, and E. Oseret.

http://www.hsyl20.fr/home/files/papers/shenry 2015 vprof.pdf.
[14] Irigoin and al. Interprocedural analyses for programming environments.

In Workshop on Evironments and Tools For Parallel Scientifc Comput-
ing, Saint-Hilaire du Touvier, France, 1992.

[15] P. Klint, T. van der Storm, and J. Vinju. Rascal a domain specific lan-
guage for source code analysis ad manipulation. In IEEE International
Working Conference on SCAM 2009, pages 168–177. IEEE.

[16] S. Koliaı̈, Z. Bendifallah, M. Tribalat, C. Valensi, J.-T. Acquaviva, and
W. Jalby. Quantifying performance bottleneck cost through differential
analysis. In ICS ’13, pages 263–272. ACM.

[17] C. Lattner and V. Adve. Llvm a compilation framework for lifelong
program analysis and transformation. In CGO’04. IEEE.

[18] R. v. M. Bravenboer, K. T. Kalleberg and E. Visser. Stratego/xt 0.17. a
language and toolset for program transformation. In Science of Computer
Programming. Elsevier, 2008.

[19] A. Mandal and al. Using dynamic compilation to achieve ninja
performance for cnn training on many-core processors. In Europar.
IEEE, Aug. 2018.

[20] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. Cil: Intermediate
language and tools for analysis and transformation of c programs. In
CC’02, pages 213–228, Univ. of California, Berkeley, USA. Springer.

[21] D. Novillo. Samplepgo: The power of profile guided optimizations with-
out the usability burden. In LLVM-HPC ’14, pages 22–28, Piscataway,
NJ, USA. IEEE Press.

[22] Paraformance. http://paraformance.weebly.com/.
[23] Quinlan and al. Rose: Compiler support for object-oriented framework.

In Parallel Processing Letters, pages 215–226, Lawrence Livermore
National Laboratory, Livermore, CA, USA, 2000. World Scientific.

[24] R. Suda, H. Takizawa, and S. Hirasawa. Xevtgen: Fortran code trans-
former generator for high performance scientific codes. In International
Journal of Networking and Computing, pages 263–289, 2016.

[25] X. Xiao, S. Hirasawa, H. Takizawa, and H. Kobayashi. An approach
to customization of compiler directives for application-specific code
transformations. In International Symposium on Embedded Multi-
core/Manycore SoCs, pages 99–106, Sept 2014.

[26] Q. Yi. Poet: A scripting language for applying parameterized source-to-
source program transformations. In Software Practice And Experience,
pages 675–706, Univ. of Texas at San Antonio, USA, 2012. John Wiley
and Sons.

