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Abstract The complexity and the diversity of computer architectures have
evolved dramaticaly over the last decade, which makes it impossible to man-
ually optimize codes for all these architectures. In addition, compilers must
remain conservative with respect to their optimization choices because of
their static cost model. One way to guide them is to use feedback data from
data profiling of a representative training dataset (FDO/PGO) for a given
application. AIt then becomes possible, based on that knowledge, to add
specific compiler directives and/or flags to enhance performance. Moreover,
automatic transformations simplifying portions of the application (e.g. spe-
cialization) can be applied. In this paper we present ASSIST, a directive-
oriented source-to-source manipulation tool that aims at providing such as-
sistance. The tool is integrated into the MAQAO toolset and takes advantage
of all the available static and dynamic profiling data produced by the other
tools. It also features a set of code transformations triggered by directives.
The combination of both leads to an autotuning process that helps users to
keep their code as generic as possible whilst also benefiting from a perfor-
mance gain related to feedback or user knowledge. We demonstrate how we
can build a compiler’s PGO-like tool and compare our first results to the
Intel compiler PGO mode.

1.1 Introduction

Traditionally users try to change their source code according to the metrics
and hints reported by performance evaluation tools. The source code may
end up bloated by optimization transformations (e.g. tiling), special cases or
even useless modifications. It is even worse if users need to target multiple
architectures (e.g. x86 and GPU or ARM). A much more natural way would
be to describe the foreseen (optimization) transformations, on the basis of
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an specific architecture if needed, and not overburden the source code more
than necessary.

The common way to implement this approach is to annotate source code
either through custom directives [28, 29, 35], comments [16, 36] or using Do-
main specific Language (DSLs) [7,8,11,21,26]. Directives are simple but less
powerful when compared to DSLs which can handle very advanced patterns
at the price of complexity. From the point of view of a a regular applica-
tion developer, directives provide the best compromise (expressiveness v.s.
complexity). Compilers provide very few transformations (e.g. ICC/IFORT:
Unroll, Unroll and Jam, enabling/disabling blocking and fusion). Hence, tools
offering additional transformations are required.

Before this, there is a need for hints that will guide the selection of trans-
formations. This is where feedback data optimization (FDO) comes into play.
Feedback data is any kind of data that can help to characterize an applica-
tion from a performance perspective. It should be noted that in the literature
FDO and Profile Guided Optimizations (PGO) have the same meaning. We
will use FDO in the rest of this article because, in our opinion, it is more
generic. For instance feedback data could be a small trace which differs from
a profile.

The complexity and the diversity of computer architectures have dramat-
icaly evolved over the last decade. In addition, compilers must remain con-
servative with respect to their optimization choices because of their static
cost model. One way to drive compilers is to use feedback data either based
on static analyses or data profiling of a representative training dataset for a
given application. It then becomes possible, based on that knowledge, to add
specific compiler directives and/or flags to enhance performace. Moreover,
automatic transformations simplifying portions of the application (e.g. spe-
cialization) can be applied. One example of FDO is the FDO modes embedded
with production compilers (Intel, GCC and more recently LLVM) known as
pgo [22] and autofdo [6,17] . A typical FDO process encompasses three steps:
producing an instrumented binary using a special compiler flag(s); executing
the resulting binary to obtain a profile; and finally, using feedback data dur-
ing the compilation process to produce a new version that is supposed to be
more efficient.

This paper presents ASSIST, a directive-oriented source-to-source manip-
ulation tool. It is able to guide code transformations based on static and dy-
namic feedback. It aims at providing assistance with respect to productivity
and performance efficiency. The main contributions of our tool are to pro-
vide: a new open source FDO tool using both static and dynamic feedback
while existing ones only use dynamic feedback; a more flexible alternative
to compilers PGO/AutoFDO modes while being complementary; elaborated
transformations such as loop and function specialization including our block
vectorization transformation which helps the compiler to harness vectoriza-
tion.
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This paper is organized as follows: Section 1.2 provides an overview of
our approach. Then section 1.3 describes the design and implementation of
the tool. The following section 1.4 presents the available transformations. In
section 1.5 we will study the experimental results. Related work is listed in
section 1.6 before concluding and mentioning future work in section 1.7.

1.2 Background and goals

The MAQAO toolset [2] focuses on the performance evaluation and optimiza-
tion of binary applications. The toolset features multiple tools [5, 19, 20, 30]
which share the same rationale, namely pinpointing issues at source level and
providing users with hints and even workarounds to be applied. In order to
efficiently use these tools, a methodology [3] has been proposed. It aims at
providing a way to filter all the data collected from the performance evalu-
ation tools and classify them according to their return on investment (ROI)
metrics.

Working at binary level has the advantage of evaluating the code that
will really be executed (i.e. after compiler modifications). However, the main
drawback is that we do not have access to the source code. A match between
assembly level and high level source structures like functions/loops has to be
based on debug information provided by the compiler. According to the opti-
mization level, debug information is more or less accurate. This is due to the
transformations/optimizations (e.g. inlining) performed by the compiler. It is
also impossible to control all code properties that could help to provide more
accurate results when combined with binary analyses. Enabling MAQAO to
deal with source code would allow more accurate analyses. MAQAO can pin-
point different kinds of performance issues (i.e. diagnosis). The next step is
to try to fix them at source level.
When performing optimizations on real applications we face three main con-
cerns: selecting which transformations to apply to fix issues; minimizing code
bloating due to transformations like hand-coded (function/loop) specializa-
tion; avoiding having to apply tedious (when not error-prone) transforma-
tions. The main goal of our approach is to help users increase performance
without reducing the programming productivity.

1.3 Design and Implementation

In order to achieve the goals listed in the previous section, ASSIST must han-
dle source code manipulation and harness the metrics and analyses produced
by MAQAO tools. Then, we will explain the choice of the selected compiler
structure. Finally we will show how ASSIST can benefit from its integration
into MAQAO and vice versa.
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1.3.1 Overview

ASSIST is an open source FDO tool and framework based on the Rose [27]
compiler infrastructure and integrated into the MAQAO [2,32] toolset. More
details are provided in the next subsections.

Figure 1.1 presents an overview of the steps involved in the tool’s opera-
tion. The following section will provide examples illustrating this process.

Fig. 1.1 Overview of the tool’s usage.

ASSIST provides users with a simple yet flexible interface that offers two
alternative approaches to specify transformations. The first one makes use of
directives while the second one is based on a (Lua) script (depicted as Trans-
formation script). he latest provides a means to completely hide the trans-
formations. For example, the directive !DIR$ MAQAO UNROLL=4 above a
loop triggers the unroll (factor of 4) of its body, if applicable and by running
the following command: maqao s2s -option=”apply-directives” -src=foo.f90
the transformed code can still be compiled and even reviewed by the pro-
grammer if necessary. The source code is parsed and transformed into an
abstract syntax tree (AST) that ASSIST will transform accordingly into a
given set of directives or a script file. Leveraging optimization opportunities
is possible when feedback data from MAQAO [2,32] is available. For example,
to apply the loop count transformation (described in the next section), it is
possible to run maqao s2s -vprof xp=/path/to/vprof.csv -bin=binary. It will
use MAQAO API to search for information about loops and files to handle
them and read MAQAO VPROF results to apply the loop count transfor-
mation. Available analyses are based on MAQAO CQA (code quality) and
MAQAO VPROF (value profiling). Finally, the modified AST is parsed to
generate a modified source file as output.
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1.3.2 Compiler infrastructure

Applying transformations to a given source code requires a set of frontends. In
our case we will give priority to scientific applications (HPC field), hence se-
lecting C, C++ and Fortran languages. We want an output code that remains
at source level and not in a compiler-specific intermediate representation.
That is why we chose to code our transformation through the manipulation
of an AST.

For all these reasons we decided to look for an existing infrastructure
instead of implementing a new one.

Fig. 1.2 Constraints array

There are many compiler available infrastructures and specialized source-
to-source frameworks, but only very few can satisfy our requirements. LLVM
[12] is a compiler infrastructure that allows the manipulation of an AST
through a library. However, it only supports C/C++ languages through
Clang. Clang is very useful and easy to use to analyze an AST and add
passes to the compiler but not for performing source-to-source transforma-
tions. Even if theoretically possible, it is impossible in reality due to a lack
of documentation and specialized functions. Transformations are expected
at the IR level. Also there is currently no production Fortran support. Very
recently Flang [13] was introduced as the new Fortran frontend but it is still
in its early phase of development.

Cetus [10] is a compiler infrastructure featuring source-to-source transfor-
mation of C AINSI codes only. DMS [11] is a commercial program analysis
and transformation system. That is why it is not included in our comparison
table.
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Despite some shortfalls (refer to ASSIST’s git repository) in the manage-
ment of the Fortran language that we have managed to overcome, we chose
Rose [27]. It is the most suitable framework given our requirements. It is the
only open source and easy-to-use (i.e. documented) tool capable of manipu-
lating the AST of C, C++ and Fortran source codes.

Figure 1.2 presents a summary of the main compiler infrastructures and
specialized source-to-source frameworks. The table lists the requirements and
how they are fulfilled or not. As we mentioned earlier, Rose appears to suit
our constraints best.

1.3.3 Integration into MAQAO

ASSIST is a MAQAO module. That means that it has access to the MAQAO
core (binary and analysis layers) and can also communicate with other
MAQAO tools through an internal API. MAQAO tools deal with binary
function and loop objects. Since ASSIST manipulates source code it must
perform a mapping between real source lines and sources lines provided by
the compiler through debug information. That way, ASSIST can establish
a link between source and binary functions/loops. This implementation also
allows other MAQAO tools to take advantage of ASSIST’s ability to analyze
and manipulate source code. That is how we extend MAQAO’s ability to deal
with source code.

The current implementation of ASSIST uses three MAQAO modules:
LPROF for profiling (hotspots); CQA for code quality metrics (e.g. vector-
ization ratio); VPROF for function and loop value profiling. In this paper we
only mention the features that are used by ASSIST.

1.4 Supported transformations

ASSIST features different kinds of transformations, from common ones like
loop unroll to less common ones like loop and function specialization. We did
not find any available tools providing such transformations. Moreover these
specialization transformations have been specifically designed to be combined
with the other available transformations. Block vectorization and loop count
transformations are only available in ASSIST.

1.4.1 Common loop transformations

The current implementation of ASSIST supports the following common loop
transformations: interchange; unroll (including full unroll); strip mine; tile.
Other ones may be added in the future.
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1.4.2 Constant propagation and local dead code
elimination

Since we can apply multiple transformations we need a means to clean up
transformed code eliminating useless chunks generated by specialization (e.g
conditionals). For that purpose we implemented constant propagation and
local dead code elimination.

After the constant propagation, we browse the AST to check all conditional
branches. If a loop is detected with only one iteration, the loop is replaced by
its body and the iteration variable replaced by its value in the whole body.
ASSIST also checks ”if” statements, by checking if the conditional expression
is always true or false to replace the whole ”if” statement by its ”then” body
or by its ”else” body. To check if a conditional expression is always true or
false, the expression is statically evaluated. If it is composed of two integers,
we compare them with the corresponding operator. If it implicates a variable,
ASSIST tries to trace back through previous assignment statements involving
the variable to check if it ends up as a constant and if this assignment is not
the result of an ”if” condition or a loop. If all of the conditions are true, the
variable will be considered as its value and the test continues.

1.4.3 Specialization

Specialization is the act of creating particular versions of the same code by
explicitly considering specific values of one or more variables. For instance
we can specialize a loop based on special values of the induction variable.
Traditionally we want to handle a loop differently depending on whether it
executes a low or a high number of iterations.

Specialization is not an end in itself but just a means to make optimizations
happen. It is used when possible to simplify in some way a portion of code
based on the knowledge of one or multiple values and their occurrences. As
a consequence, the main drawback of specialization is that it can worsen
performance if not used sparingly. To perform either loop or function value
profiling we rely on MAQAO VPROF. Our specialization transformations
can be categorized into two transformations; loop specialization and function
specialization.

In the case of function specialization we will usually want to target specific
value combinations. Figure 1.3 provides such an example. A new specialized
function is created and the according conditionals are generated. To try to
simplify the specialized code we apply our partial dead code elimination pass.

It is possible to apply as many specialization directives as combinations
we target. Figure 1.8 in section 1.5 is an illustration of such a case. In the
current implementation specialization is limited to only integer variables.
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#pragma MAQAO SPECIALIZE(N=4,s={1,10})
void foo (int N, int* a, int* b, int s)
{

int e = s - 10;
if (e > 20) {

for (int i=0; i < N; i++) {
a[i] = b[i];

}
} else if (s > 10) {

for (int i=0; i < N; i++) {
a[i] -= b[i];

}
} else if (s <= 10) {

for (int i=0; i < N; i++) {
a[i] += b[i];

}
}

void foo (int N, int* a, int* b, int s)
{

int e = s - 10;
if ((N==4)&&(s>0)&&(s<11)) {
return foo_ASSIST_Ne4_sb0_11(a,b,s);

}
if (e > 20) {

for (int i=0; i < N; i++) {
a[i] = b[i];

}
} else if (s > 10) {

for (int i=0; i < N; i++) {
a[i] -= b[i];

}
} else if (s <= 10) {

for (int i=0; i < N; i++) {
a[i] += b[i];

}
}

}

void foo_ASSIST_Ne4_sb0_11_ei11 (int* a,
int* b, int s)

{
int e = s - 10;
for (int i=0; i < N; i++) {

a[i] += b[i];
}

}

(a) Before function specialization (b) After function specialization

Fig. 1.3 Example of function specialization performed by ASSIST

1.4.4 Loop count transformation

We saw that loop specialization required an a priori knowledge of loops’
bound value. This piece of information can be exploited in another way. Intel
compilers offers the ability to specify a loop count (min, max, avg) directive.
The compiler can then make that information available to its optimization
passes. By default the compiler will generally generate multiple variants (e.g.
scalar, SSE, AVX, etc.) of the same source loop at the binary level. However
it will generate much fewer variants by considering loop count data. Helping
the compiler in this way throughout the whole application can provide a
significant performance gain (see section 1.5).

1.4.5 Block vectorization transformation

We noticed on some occasions that even when the loop bound was hard-
coded the compiler would not vectorize that loop properly. We can check
such cases thanks to MAQAO CQA which offers vectorization metrics. This
transformation performs the following steps on a given loop: force the com-
piler to vectorize the loop using SIMD directive; prevent peeling code from
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#pragma MAQAO BLOCKVECB

for (int i=0 ; i < 7; i++ ) {

a[i] += b[i]

}

#pragma simd

#pragma vector unaligned

for (i = 0; i < 4; i++) {

a[i] += b[i]

}

#pragma simd

#pragma vector unaligned

for (i = 4; i < 6; i++) {

a[i] += b[i]

}

a[6] += b[6]

(a)Before (b) After

Fig. 1.4 Example of Block Vectorization on x86 64 peformed by ASSIST

being generated using vector unaligned directive; and adapt the number of
iterations to the vector length. Figure 1.4 illustrates this transformation.

1.5 Experiments

In this section we will compare our results with the Intel compiler pgo mode
that we will refer to as IPGO. Intel compilers are neither open source nor
free, but they are available on almost all the HPC clusters and provide better
performance in our tests (compared to GCC and LLVM). The main reason
behind this choice of pgo comparison lies in the lack of FDO tools avail-
able for regular users. Our goal is not to mimic the pgo, rather to present a
complementary approach which goes beyond observed limitations.

All the measurements presented below were gathered on an Intel(R) Sky-
lake SP based machine (Intel Xeon Platinum 8170 CPU@2,10GHz) with the
Intel compiler version 17.0.4. Multiple executions (31) were performed to
reach statistical stability and avoid outlier measurement data.

Also, this section presents the experimental results of the transformations
offered by ASSIST based on feedback data and user insights.

Application pool

Three functional industrial applications were used to test our approach:
Yales2 [9], AVBP [31] and ABINIT [14].

YALES2 is a numerical simulator of turbulent reactive flows using the
Large Eddy Simulation method. It is a finite volume code for unstructured
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meshes, with an innovative 4th order spatial scheme for the discretization
of convective and diffusive terms. It is based on the low-Mach number ap-
proximations of the Navier-Stokes equations, which solves an elliptic Poisson
equation at each iteration and scales well to over 16K cores. The MPI ver-
sion uses subdomain decomposition with adjustable domain size, allowing
efficient cache usage. ASSIST has been tested on two of their datasets named
”3D cylinder” and ”1D COFFE”. The application is written in Fortran 2003.

AVBP is parallel CFD code developped by CERFACS that solved the
three-dimensional compressible Navier Stokes equations on unstructured
multi-element grids. It uses third space and time Taylor Galerkin numeri-
cal schemes. The code has been ported and tested up to 200K cores with
an 85% strong scaling efficiency (BG/Q) for a 200M element case (1000 ele-
ments per MPI rank). Cache coloring uses the reverse Cuthill-Mckee method.
ASSIST has been tested on two representative datasets names SIMPLE (he-
licopter chamber demonstrator combustion simulation) and NASA ( NACA
blade simulation). The application is written in fortran 95.

ABINIT is a package allowing users to find the total energy charge density
and electronic structure of systems made of electrons and nuclei (molecules
and periodic solids) within Density Functional Theory (DFT) using pseu-
dopotentials (or PAW atomic data) and a planewave basis. The application
is developped in Fortran 90.

Impact of loop value profiling

Our first FDO optimization is based on knowing loop trip counts obtained by
value profiling using MAQAO VPROF. When loops exhibit a complex control
flow due to multi-versioning, knowing the trip count can help the compiler
simplify the decision tree. We will refer to the loop count transformation as
LCT for the remaining part of this section.

Figure 1.5 presents the speedups obtained with LCT, IPGO and the com-
bination of both for each application/dataset. Both LCT (15%) and IPGO
(14%) provide a performance gain for the Yales2 using 3D cylinder as a
dataset. The combination of both LCT and IPGO raises the gain to 19%.
For the second Yales2 dataset (1D COFFE) both endeavors only reach 5%.
However, the combination does not pay off. For AVBP, running the SIMPLE
data set, we observe a negligible speedup. However, for AVBP individual con-
tributions of IPGO and ASSIST can be partially combined. IPGO provides
a 10% speedup on AVBP with the NASA dataset while LCT only achieves
7%. The combination reaches 12%.
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This study shows that providing the compiler with loop trip count feedback
(minimum, average and maximum values) results in a performance gain. We
can also observe that the combination with pgo can lead to a higher gain.
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Fig. 1.5 Impact (speedup) of ASSIST LCT when compared to IPGO.

Specialization

While optimizing applications, we noticed that we often resort to function
and/or loop specialization before applying other transformations. The follow-
ing two examples show how coupling specialization with other transforma-
tions can provide significant performance gain.

AVBP

In this example we couple both specialization and block vectorization trans-
formations applied to the ten most time-consuming functions. We first apply
loop and function specialization separately, then we apply block vectorization
on the most efficient version. We also apply the LCT and the IPGO on the
original version to verify whether the compiler is able to perform better using
additional guidance.

Figure 1.7 compares the speedup ratios of each version with the original
one. Function and loop specialization are performed separately and presented
here to show their individual impact.

We observe that block vectorization can offer a 2.6x performance gain while
the loop and function specialization only achieve, at best, a speedup of 1.5x.
Performing only loop or function specialization may be counterproductive in
some cases because of the induced complexity of the control flow if no further
induced optimizations are possible.
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(a)Before ASSIST transformations

(b) After ASSIST transformations

Fig. 1.8 ABINIT - Example of function specialization coupled with loop tiling, performed
with ASSIST, for the use case Ti-256. Boxes highlight the tiling transformation of the

innermost loop.

When the compiler fails to vectorize a loop properly, the block vectoriza-
tion transformation is very effective given that it explicitly exposes a simpler
loop structure with no peel or tail loops to the compiler. In our case, we can
evaluate the vectorization ratio of a loop using MAQAO CQA; ASSIST can
automatically trigger the transformation from the CQA results by extracting



14 Youenn Lebras, Andres S. Charif Rubial, Romain Dolbeau, and William Jalby

several items of information, like the vectorization ratio metric, the file and
the function where the loop is. The block vectorization transformations force
the compiler to vectorize small loops with a small number of iterations; the
compiler also fully unrolls these loops.

ABINIT

In this example, ASSIST is fully driven by the user. At first, a full profiling of
the code is performed, followed by value profiling on one of the main hotspots
of the application. Three input parameters were found to be of importance.

First, the function can be called with two different types of input data,
either real-valued data or complex-valued data. A given test case will almost
exclusively use one or the other. As those data are expressed as an array
with one or two elements in part of the code, specialization of this value
simplifies address computations and vector accesses by making the stride a
compile-time constant rather than a dynamic value.

Second, multiple variants of the algorithm are implemented in the function.
Which exact variant is used depends on two integer parameters. Again, a
given test case is usually heavily biased toward a small subset of possible
cases. Specialization to one case removes multiple conditionals. As the loop
nests for a given case appear in different branches, this removal of conditionals
exposes the true dynamic chaining of loop nests to the compiler with no
intervening control flow break.

Once specialized with ASSIST, the function becomes much simpler to
study. It turns out that the dominant loop nest in the function is amenable
to loop tiling. A large array is updated in its entirety inside a loop, a bad
pattern for cache usage. Loop tiling make it possible to updates the array by
block, and to only scan and update the array once. While this work would
not be particularly difficult to do by hand, more than two dozen variants
of the loop nest with similar properties appear in the original function. As
the transformed loop adds an extra loop to the nest, complicates indices,
and requires a remainder loop, it is much easier and much more reliable to
automate the transformation process.

Figure 1.8 shows the directives on an extract of the function, in part (a).
Three specialized variants are produced for the common use cases in our
reference test Ti256, by the first three lines of the figure. The critical loop
nest is subsequently tiled, but only in the specialized version, by the directive
immediately above the loop nest. Part (b) show extracts from the output of
ASSIST. The original function now calls the specialized variants whenever
the parameters are appropriate. Every conditional previously dynamically
encountered is now collapsed into that one test. Below the original function,
figure 1.8 also shows the new loop nest with the loop tiling transformation
applied. Only 8 elements (a friendly value for a vectorizer) are computed
in the innermost loop versus the entire array previously. An outer loop has
been added which scans the entire array by block of size 8. In practice, the
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Fig. 1.9 ABINIT - Ti-256 - Speedups of IPGO, ASSIST LCT, specialized with ASSIST,

specialized and tiled with ASSIST compared to the original version

innermost loop is removed by the compiler, which fully unrolls and vectorizes
it.

Speed up results are shown in figure 1.9. The original version is at one by
definition. We added IPGO to show the potential of our approach. Special-
ization offers a small gain but the dominant issue is still the time spent in the
critical loop nest. Adding tiling offers a large gain of almost 1.8x in total by
significantly reducing the memory bandwidth usage of the critical loop nest.
Despite the complexity of the original function, ASSIST would make it easy
to apply the same transformations to other possible use cases of the function
for other test cases of the ABINIT code.

1.6 Related Work

The originality of the approach presented in this paper lies in the combi-
nation of both source-to-source transformations using annotations and FDO
approaches. More precisely feedback data drives source-to-source transforma-
tions to achieve both productivity and performance.

Orio [16] is the closest tool and approach to ASSIST. We share the same
goals, namely improving productivity and performance using annotations at
source level as well as being able to handle architecture-specific/independent
code optimizations. However, they use empirical performance tuning to
achieve better performance. This implies generating multiple variants and
evaluating their cost. Our approach opts for a cheaper and more straight-
forward path using FDO. Our approach encompasses static and dynamic
analyses. This means that we can assess the quality of the code generated
by the compiler (using MAQAO CQA [30]) and get execution behavior met-
rics. CHiLL [7] is a framework that provides loop level transformations and
also uses empirical optimizations. It targets compilers and not regular de-
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velopers. Xevtgen [28] goes a step further when considering source-to-source
transformations. It allows application developers to define their own trans-
formations using a dummy Fortran syntax coupled with directives. From our
own experience in helping developers optimize their code, we can claim it
is dangerous to assume they will be willing to invest time and ressourses to
write their own transformations, even if the interface is based on a well-known
language such as Fortran. For this particular reason, we have tried to provide
as many predefined transformations as possible. Also, plenty of Domain Spe-
cific Languages or frameworks are available for performing source-to-source
transformations, i.e: [8, 11,21,26,36]. Some also implement parallel transfor-
mations [1, 4, 18,24,25,33].

For FDO, the related work analysis is straightforward: there are very few
tools and the main goal is to achieve performance. From what we encountered
during our research, the only available tools implementing FDO are compilers,
with PGO (e.g. Intel, GCC, LLVM), and AutoFDO (e.g. Intel [17], GCC
[15] and LLVM) modes. AutoFDO [6] is also the name of an in-house FDO
deployment system proprietary to Google. Compared to PGO, AutoFDO
exploits hardware counter profiles. In both cases feedback/profile data are
injected early in the intermediate representation of the compiler so that all
the optimization passes can take advantage of them. Our approach aims to
help modern compilers by not injecting data using a specific format, but
rather at source level. From a performance point of view, both approaches
are complementary. During our work, we also came across Aestimo [23], an
FDO research evaluation tool that can be coupled with the Open Research
Compiler [34]. However it does not pursue the same goals.

1.7 Conclusion and future work

ASSIST is an open source tool that was developed with the aim of providing
assistance to application programmers in order to achieve better productiv-
ity and code performance. We have shown the effectiveness of our approach
when dealing with industrial applications by using either static and dynamic
feedback data, or user guidance.

The tool presented in this article provides the foundation for an autotuning
tool. As future work we plan to harness all the available dynamic analyses
existing in MAQAO including those using hardware counters to perform and
automate more optimizations.
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