Submitted for confidential review to: The 2007 International Symposium on Code Generation anarniattion

The Design and Architecture of MAQAOPROFILE:
an Instrumentation MAQAO Module

Abstract

This paper presents MAQAOPROFILE, an instrumentation MARAodule. MAQAOPROFILE builds a com-
prehensive profile fine grain profile of the application. Iderto build a more accurate profiling, instrumenta-
tion have to be handled after the compilation stage. Thisdsonly way to prevent compiler optimizations to
stumble on extra-code added for the purpose of profiling.ifiieumentation module gives MAQAO the pos-
sibility to execute rules based on both static and dynamédyais. Consequently, instrumentation is performed
by injecting a limited number of extra-instruction, nanassembly probesround the targeted code fragments
to monitor. This low-level scheme is technically challengito implement (e.g. ensuring the integrity of the
register stack for IA64 code) but it allows minimal intedaces with both the behavior and performance of
instrumented applications. In fact, the instrumentatii@cés have to be as reduced as possible not to perturbate
original code behavior.

Instrumentation can focus at several levels of granulag&ch one having its own interest. Additionally
to timing, instrumentation is also performinglue profiling Value profiling provides an observation of the
application from an inner point of view, at the opposite & traditional profile which remains solely behavioral.
As MAQAQO is able to perform analysis on multi sources (projaode), MAQAOPROFILE instruments those
project. Implemented in MAQAO tool, MAQAOPROFILE providssveral views on the control flow graph, call
graph and analysis module. These views can be used to matigaugh the assembly or source code, to edit
analysis results in different manner, and a performancesardis implemented to help end-user to detect and to
understand performance problem. It indicates optiminaticompiler, fails optimization and its solutions.

1. Introduction

The evolution of the technology and architectures of thecgssors, get always a maximum theoretical
performances. However, the really performances obtaigabéoprograms are far from the ideal performances.
The degradation causes can be from: the source code, mgesgiitem, hardware architecture or compiler.

In order to cure these sources of degradations, effortsruteleslopment research are mobilized to bring
tools and solutions to understand, to predict and to ewalilt code performance. The goal of these works is
above to reduce this variation of the performances.

Computer architects need tools to evaluate how programgearilorm on new architectures. Software writers
need tools to analyze their programs and identify critigetes of code. Compiler writers often use such tools to

find out how well their instruction scheduling or branch pe&idn algorithm is performing or to provide input

1 2007/1/27

for profile-driven optimizations. Program analysis toote axtremely important for understanding program
behavior.

Most of the performance analysis tools/toolkits can beatidped among two main classes. The first one is
focused on the exploitation of hardware performance casimtbile the second relies on code instrumentation or
even transformation. The regular use of performance imsntation and analysis tools to tune real application
is surprisingly uncommon. traditionally, hardware cousteprofiling information, static analysis and even
expert knowledge are exploited individually or at bestricoanected through ad hoc tools.

As a response to the enlarging gap between needs and exdefimgare, tool we have developed MAQAO,
which stands for Modular Assembly Quality Analyzer and @yitier. The concept is to centralize all low level
performance information and build correlations. As a ied8dAQAO produces more and better results than the
sum of the existing individual methods. MAQAO is designedaet of interlinked modules each of them being
loosely coupled to the others.

MAQAOQO [1] is working at assembly level: Assembly code is adyoline of information. These information
just need correlation and a way to be exploited (either dnbumpck to end user and fed directly in the
compilation chain) to reveal their high value. Additiogalbeing based after the compilation phase allows
a precise diagnostic of compiler optimization successegoarfailures. Thus reporting directly to end-user
information on potential improvement.

As an automatic tool, MAQAO processes large amount of dadaagplies optimization and diagnostic to the
whole code and is not restricted to a limited number of hotspbhis approach allows to track down most of
the little percentage loss all over the code.

Finally, we rely on existing standard solutions when they eiffective: hardware counters are supported
through perfmon [2], data storage is handled with a databakech can queried by SQL). And a scripting
language is embedded within MAQAO to allow user to extenddoading to his own needs.

Our purpose is not to design yet another software tool but@ément an optimization methodology and
to propose a real Performance Framework. Assembly codedtisp is done statically, data profiling is done
using code instrumentation and hardware counters fit traaditional role of hotspot detection.

MAQAQO is located at the assembly level for its analyzes, ldigp source code as well as profiling informa-
tion. As most of Apple’s software the GUI is extremely wellsamed. However Shark lacks instrumentation
and value profiling, code structures are not displayed amdPdrformance Oracle advices are currently limited

to very few messages: alignment, unrolling or altivec (wezation). Additionally as most of Apple’s software

2 2007/1/27

it is very proprietary and does not offer open-source sagplanguage or standard database. Nevertheless it
remains an advanced interface, with an extensive suppatyrmic behavior (including call stack, garbage
collection, binary analysis), and it underlines the neetthitik performance software beyond gprof.

This paper presents MAQAOPROFILE, an instrumentation neiuMAQAO tool. A complement module to
MAQAOPROFILE is MAQAORACLE. It is a performance advisor drig the optimization process through
assembly code analysis and performance evaluation. Thefridss paper is organized as follows. In section 2,
we outline the MAQAOQ framework. We describe briefly in senti®the static analysis. Section 4 provides the
overall design of MAQAOPROFILE. Section 5 describe the aediure and implementation of MAQAOPRO-
FILE. In section 6, we describe brievely MAQAORACLE. In sect 7, we point the reader to related work in

the area of instrumentation tools. Finally, in section 8,st&te our conclusion.

1.1 Motivating Example: Hardware Counters Are Not The Panaea

Performance is often a multi-dimensional problem, thiskgiously due to the number of actors involved and
their respective complexity.

Despite the multi-faceted nature of performance analylses,current trend is to rely heavily on hardware
counters. Results obtained by this approach are numerali®fahigh quality, therefore counters are now
ubiquitous on every processor hitting the market. Addaibyncounters are more or less standardized mainly due
to the PAPI [3] initiative. However, while being helpful thuni-dimensional method is not sufficient and often
answers only to a part of the performance question. Fornosté is well known that what is importarg not
the number of cache misses, but if these misses were ovedapmot In fact, a large amount of the hardware
budget is already spent for latency tolerance techniquesgrthan 96.3% of the 1.72 Billion transistors on
Montecito processor [4] if caches are considered as baigrtgisuch techniques), therefore in term of efficiency
these features should be used, but performance troubleispwlen they are overused.

Obviously the miss cost problem could be tracked down with@augh performance counter analysis
coupled with a large set of experiments: however the costydqr that shows that counters are not the adequate
tool. The following example, coming from a real world optiaiion problem, emphasizes hardware counters

power and limitation.

1.1.1 Experimental Set up

All the experimental results reported in this paper wereaainletd with a state of the art compilécc v9.0.

Experiments were run on a 1.6 GHz /9 MB L3 Itanium 2 system.

3 2007/1/27

\ Looptrip| 2 | 4 | 8 | 16 | 32 | 64 |
CPUCycle| 87 | 150 | 278 | 548 | 1065] 2101
Inst. issued| 304 | 542 | 1018 | 1970 | 3874 | 7682

F.Opsissued 68 | 136 | 272 | 544 | 1088 | 2176
StallCycle| 18 | 36 | 72 | 157 | 307 | 607

Stall % | 21% | 24% | 26% | 29% | 29% | 29%

Table 1. Hardware counter measurements for FFTW 4 codelet. Stalé agdairly limited, and IPC seems
satisfying. Overall, performance is around 33 CPU cyclestpeation.

Looptrip| 2 | 4 8 16 | 32 64
FP.instr.| 68 | 136 | 272 | 544 | 1088 | 2176
MEM instr. | 44| 88 | 176 | 352 | 704 | 1408

| Bound (cycles) 28| 56 | 112 224| 448 | 896 |

Table 2. Corresponding Essential Instructions determined by MAQA&ic analysis. Code appears to be
compute bound with an optimal execution time of 14 cyclescpeles.

1.1.2 Optimizing FFTW kernels

FFTW (Fastest Fourier Transform of the West) [5] is a highiged version of the FFT. FFTW is built over
decomposition of complex FFT in simple computational bkonkmedCodelets

These codelets, which are small pieces of code, contain ofittse computation. A generator is able to pro-
duce automatically different flavors of codelets but alllef todelets are generated in C, thus performance de-
pends on the compiler. Trying to push performance beyontekefound compiler options(3 -fno-alias),

starts with a close examination of hardware counters.

Essential instructions: determining intrinsic code bounds

Results from Table 1 depict dynamic results, i.e. a code githd IPC and a rather limited fraction of stall
cycles. Dynamic and static results match for the number sifuictions issued304 instructions are issued in
two iterations,542 for four iterations, corresponding to an averagd 2f instructions issued per iteration plus
64 instructions of overhead (the same applies for cpu cyclE®). dynamic measurement is around 33 cycles
per iterations.

Stalls are determined statically as the difference betwkerinstructions issues and the cycles prediction
provided by the compiler. In our case (simple code withoainbh), stalls are stemming mostly from depen-
dencies (load to use latencies, floating point latencies The compiler predict$ stall cycles per iteration

while the hardware counter measufedtall cycles per iteration. Adding thisextra cycles to the number of

4 2007/1/27

cycles estimated by the compiler, giva® cycles per iteration which is very close to tB& cycles measured.
Therefore, optimizing the code by reducing the number dissteould bring at best a 20% speed-up.

The performance issue is somewhere else: MAQAO reportsegnation on loop structure: loop is neither
pipelined nor unrolled. MAQAO also collects static metrims the assembly code and lists the following
essential instructions:

34 Floating point operation's

6 FMA —2 per cycle
14 cycles
22 simple flops —2 per cycle
22 Memory operations:
14 loads —4 per cycle
8 cycles

8 stores —2 per cycle

If we consider a perfect overlap between memory and compuotdtoperations (data dependencies completely
concealed), bound imax(memory, floating point). Therefore this loop is compute bound: 14 cycle per
iteration. Table 2 allows a quick comparison with staticlgsia results.

While dynamic measurements return a cost of 33 cycles peatibe, the optimal static schedule is 14
cycles. This exposes the code bloating problem: amongeaittued instructions, how many assential/useful
instructions ?

Monitoring dynamically the stream of addresses manipdl&te the loop reveals that addresses appear in
sequential order. This means that iterations are not @aeed nor overlapped. Therefore performance is either
constrainted by strong data dependencies or parallelisveagly exploited. Simple analysis of the source code
indicates that the iterations are independent. Howevesdhirce code contains read and write array accesses of
the form A(1), A(ios). Not knowing thatos is strictly positive forces the compiler to have a very conatve
schedule. Following these deductions, using the classgioreng (or specialization) optimization for the given
loop trip allows to provide the compiler with the criticafanmation thatios value is never set t0. This time,
the compiler generates a much more efficient code, perfaenaoamparisons are provided in figure 1, where
the optimized version delivers a speed-up of 40% as soomi@didns are over 8. To sum up, a tool assessing
assembly code quality is essential to produce high-pedoo® code. Indeed, even state-of-the-art compilers do

generate poor quality assembly from real codes and thidfisuli to evaluate using a pure dynamic approach.

1One FMA counts as 2 floating point operations.

5 2007/1/27

2250

2000
1750
1500

1250
1000
750

250
0o+ = == = S - ’_‘ ; ’_‘ ; ‘ ; ;

2std 20pt 4std 4opt 8sd 8opt 16 16 32 32 64 64
std opt std opt std opt
Loop trip count

Total CPU Cycles

[0 Computing Cycles [l Stall Cycles,

Figure 1. FFTW4 Codelet Performance. CPU cycles are displayed fastredard gtd) and Opt) which is the
version after code specialization. Performance is dowmf83 cycles per iteration to 18 cycles per iteration.
The fundamental aspect is that the observed improvemergagay than the number of originally measured stall
cycles (in red). Thanks to non essential code eliminaticaerdiWare counters are blindly reporting computing
cycles (in blue) while the CPU is processing useless instms.

A stage of static analysis delivers interesting results, iara shortcut to optimizations w.r.t. to the long and

burdensome hardware counters analysis.

2. The MAQAO Framework

For all our experiments and analyzes, we resort to MAQAO. M@QXombines static and dynamic analysis
of assembly codes, on the Itanium platform, in order to ékhify shortcomings in the compiler optimization
process and correlate dynamic behavior with static arelgsbrder to improve code efficiency. The module of
importance for the methods presented in this paper are:
Static analysis: Takes the assembly code as input, parses it and extractstadaire in the form of control flow graph,
call graph and data dependence graph.
Dynamic analysis:MAQAQO injects assembly probes at various parts of the codexacution time these probes record
time stamp and also data manipulated by the code. Profilfogimation is used to build an execution summary. The probes
can be accessed by end-user or used by the Oracle module.
Performance advisor: MAQAQO is an interactive tool that helps users to navigatetigh the program code and isolate
particularly important pieces of the code. It provides atlugh guidance to help the decision making process. However
higher level of decision can be taken by the end user, sucklastisig specific compilation flags or splitting the code and
compile different parts with different flags. At this poitet interactive mode of MAQAO is not very helpful and does
allow the correct level of code quality observation.
Optimization: The optimization can be done by modifying the instructiomesothe data layout or any other ele-
ment that is involved in the execution of a program. Our oftition methods are based on: (1)modifying assembly
code,(2)rescheduling assembly code (e.g. peeling), (@)imgedifferent versions (e.g. preftch/noprefetch).

Modules are centered around a core module and a databask ishidtimately the place where every piece of

information is stored. Database is in charge of ensuring patsistence and also offers a standardized storage format

6 2007/1/27

U U
Assembly File Static Module Front End/ Optimization Module _Optimized Assembly File

Abstract Code Representation
Oracle Module Instrumentation Module

=gy — [
Jz
T

4

S —

J] [r Profiling information
SQL Tables
H [l
I

High Level Source File J] 7&

Database

Figure 2. MAQAO components and module organization. The backboneeisbstract code representation, a
set of data structure federalizing all program performant@mmation. This information is manipulated by all
modules. To ensure data persistence they are dumped intzdata

The MAQAO framework supports the following features. Eiistllows a user to view a low-level graphical represen-
tation of the code. Second, it analyzes the assembly cods=aea by compiler(IA32, 1A64, x86, gcc). Third, it can give
to the user all necessary information (e.g. pipelined l@opjoitation of the resources). Forth, a user can instrurrten
assembly code. Fifth, MAQAO provides an expert system tp hsér to deal with complex architecture and to understand
(1)optimization failures, (2)obscure compiler decision §3)propose effective optimizations. As detailed in feg@r Data
are displayed in a GUI to offer a way for end-users to navigateng all the amount of code information. Still to leverage
end-user effort, MAQAO provides a LUA interface to accesshits internal data structures. A user can write, based on

this API, his own requests which fit to their particular priols. In this section, we describe the functinary of MAQAO.

3. Static Analysis Module

Close inspection of assembly code is real mine of infornrmatAQAO allows to do it in a systematic and structured

way. As a matter of fact, manipulating and understandingfiae is difficult. The lack of relief and hierarchy implies an

important effort to filter out essential pieces from low &t part of the code. As an analyzer MAQAQO's static module
extracts code structure. The structure is expressed thrawgt of graphs: Call Graph (CG), Control Flow Graph (CFG)
and Data Dependencies Graph (DDG). These graphs are sietgewerful tools to analyze a code.

7 2007/1/27

Notice that for MAQAO a fundamental granularity is the inmeist loop. Innermost loops constitute critical code
fragment since they are the source of large fraction of tle@ion time. Most of MAQAQ's analyzes target this code
granularity, making of MAQAO a software well suited for saiiic applications.

This notion of innermost loop is expressed in Itanium assgimpthe usage of counted branch for the back-edge (and

not branch driven by compare instructions).

® |ssues cost per iteratigrthis metric is an overoptimistic estimation of the sched@#asically it is reporting only the
number of cycles needed to emit all loop’s instructions.réf@e, only resources are taken into consideration. ljoint
with cycles cost, this metric allows to evaluate the costathadlependences for the loop. A large gap induced by data
dependencies hints that the loop should be unrolled moreessigely or targeted by other techniques to increase the

available parallelism (loop fusion, hoisting and so on).

e Cycle cost per iteratiordirectly extracted from comments let ke is the code. If needed can be trivially computed on
the base of processor’s specification [6], [7]. The cost [ressed as a function of the number of iterations, whereas
for non-pipelined loop it is simply in the form of: x N. N being the number of iterations. This static cycle evaluatio

is an the reference point to estimate the effectivenessmdityc performance.

¢ Theoretical cycle bound per iteratipastimates the data dependency weight in the critical pétls.metric indicates if
loop is of nature compute / memory bound [8]. As introducesdation 1.1 by the motivating example, at some point it
is important to know the ratio of important instructions quamned to 'syntactic sugar’ code. A well written code should
exhibit a bound close to the issues cost and close to the cgadliet. Knowing whether a loop is compute or memory
bound is a powerful indicator of the kind of optimization h@iques to use. Typically compute bound loops implies

that lots of cycles are available to tolerate memory latemoplem.

¢ Pipeline depthwarming up and draining a deep pipeline is costly, and taistze overpriced in case of limited number
of iterations. A pipeline loop has a different cost functtban a regular loop. Since to achieve at least the equivalent
of the first full iteration of the source code, a pipeline lowgeds to execute as many iterations as the pipeline contains
stages. Thus, there is a warming up cost for pipelined losich should be paid off by a better throughput when
the number of iterations increases). The cost function is: NV + b. N being the number of iterationg,the cost per

iteration and the filling-up/draining pipeline cost.

MAQAO computes several metrics which should trigger aitentRelevance of these simple statistics was illustrated i

section 1.1.2. Among the leading metrics:

4. Overall Design of MAQAOPROFILE

MAQAOPROFILE consists of four componenents, as depictdijure 5.
At first MAQAO takes as input assembly files generated by ctengilA32, 1A64, x86) and parses them to produce a

structured representation of the assembly code. Thisseptation is explained in section ...

8 2007/1/27

D]

File Static Analysis Instrumentation Help
Project | Program | Function | cffths | cmh.mn] Sql | PC | Oracle Report | Oracle Query |
= 55 Tid = IE3+ID0T
Zoom Init | Zoom In | Zoom Out | A 56 IF (WA NE. 0) GO TO 110
57 CALL PASSES (IDOT,L1,C, GH, WA(IW), WA (TXZ), WA (IX3), WA (T
58 60 To 111
Sa 110 CALL PASSBS (IDOT,L1,CH, G, WA(IW), WA (I¥2), WA (IK3), VA(T
&0 111 HA = 1-MA
61 o0 TO 115
62 112 IF (MR .NE.) 60 TO
63 CALL PASSB (NAC, IDOT, IP 1.1 IDLL, G, C, €, CH, CH, VR (IW))
64 60 TO 114
55 113 GALL ERSSB (NG, IDOT, P.L1. L1, 0K, GH. GH, C. G, WA (1V))
—les 114 IF (NAC NE. 0) WA = 1-N
&7 115 11 =12
&8 ¥ = I¥+(IP-1)+IDOT
60 116 CONTINUE
0 IF (Na .EQ. 0) RETURN
71 N2 = HeN
7z Do 117 I-1,82
73 C{I) = CH{I)
74 117 CONTINUE
75 RETURN
76 END
77 SUBROUTINE PASSE: (AL, 100 1. L1, IDLL, OG, 61, 02, CH, CH2. VA)
78 INPLICIT FEAL(4) (A-H, O-
73 DIMENSION H(IDO;L1, IP) cc(mo te.Ll)
a0 £1(100,L1, IB) E L B2 (ID,
61 CHE (IDL1, IF)
62 00T = IDu/2
63 NT = IP*IOLL
B4 IPPZ = IP+Z
85 IPPH = (IP+1)/2
86 0P = IP+IDO
a7
g8 IF (ID0 .LT. L1) GO TO 105
89 D0 103 7=2, IPPH
G o = IPP2-J
B Do 102 K-1,11
92 @ Do 101 =1, D0
a3 CH(LX, J) = CG(I,J,K}+GE(T, I0,K)
94 CH(L K, J0) = GG(I, I, K)-C0 (L, 36, K)
5 101 ST
B 102 NTINUE
/197 103 CUNTINUE
R~] = N] =
r T

Figure 3. SPEC FP 2000 benchmark 193.Facerec scrutinized with MAQ&®the left pane, the static call
graph is computed. Red arrows represent call across diffsairce files, while black arrows function calls
within the same source file. Here all the files used to compiebenchmark are displayed, the amount of Red
arrows is a straightforward metric to estimate inlining ogipnities. Notice on the right tab, where the source
code of one file is displayed, @ which indicates that on a single mouse click MAQAQO displaighhevel
analysis for this loop.

IDICIES]
Fle Static Analysis Instrumentation Help
H’n]el:ll graphRoutines.s | graphroutines_mp_loc | (i] ines.fa0 | Sl | IPC | Oracle Report | Oracle Query |
Zoom Init | Zoom In | Zoom Out | gggg ¢ ”‘frlwp a0
X Sa5q nov £68=£0 7920 g
5955 nop.i 0 3;
5956 ¥
5057 { omfi
LOOPENTRY: 35 cocg nopm 0
e 1o 5050 nov £50=£0 74304
5060 nop.i 0
5961 3
Sacz {0 mfi
Sa53 nop.m 0
Sacd nov £63=£0 VZEE
5365 nop.i 0 i
5966 // Block 100: lentry lexit ltail collapsed pipelined Pred: 10
5067 // Freq 6. Ze+00
5068 3
| |50en b6_100
So70 (oufi
5071 (p16) Ldfps 57, £54=[34]
J 5072 (pL0)fna s FEO=F6L, £1, £40 7412
LOOFEMTRY: 21 5073 nop. 1 o
=R = 5074 }
Hlock: 241 5975 nfi
5976 (plE)1dfps £46, £37=[r37] 70 g
5377 (pl®fna. s F67=£68, £1 F40 7/12
5a78 nop. i i
5479 ¥
5380 nii
5981 (pl6)1dfps F62, F49=[r3d] 7L g
5082 (plo)fna s FEB=F6Y, 1, £65 7413
5083 nop. i
5084 3
5085 ¢ omfi
5986 (pLE)1dfps F41, £32=[r3E) 71
5357 (plodina. s FT0=E7L 1 £52 713
BT nop. i i
B ¥
5390 ¢ mfi
5991 (pl6)add £32-32, £33 772 g
/ 7 [Eane Pimfns o roo_Ech er e Viva
| =D -
- :

Figure 4. SPEC FP 2000 benchmark 193.Facerec: close inspection cidaorgraphroutine localmove
with MAQAO. Part on the CFG is displayed on the left pane. Lo@ppear clearly with their back-edge.
Hexagonal blocks (at the bottom) corresponds to basic blde&luding function call. The assembly code
matching the selected loop (in red) is highlight in yellowthe right pane(i) indicates that on a single mouse
click MAQAO displays low level analysis on this loop detallm figure 8.

9 2007/1/27

MAQAO depends on an instrumentation file to guide the instmtation process and on a static analysis file to specify

the code that must be executed at run-time.

¢ |Instrumenterinjects a limited number of extra-instruction, nanzesembly probearound the targeted code fragments
to monitor. This low-level scheme is technically challamgio implement (e.g. ensuring the integrity of the register
stack for IA64 code) but it allows minimal interferencestwhioth the behavior and performance of instrumented

applications. Instrumented generates an instrumestedmbly code.

¢ Printer: applies what the user wants to do. That can be done on batck orddteractive mode. It is necessary to

choose the level and the mode of instrumentation. Prin@esggned to provide:

» An instrumenteccompanion file, is a C code that allocate a structures antiéithtwith data that user fixed in input

printer.
» An instrumentedViakefile, loads flags compilation to compile instrumenésdembly code.
» An instrumentedvrapper, add the new files generated by previous submodufeain program.
= the only thing user has to do is unpack the tgz, to type makgrt@mke) and to linked the wrapped main.

e Execution:an execution of makefile produce by printer, generates amuimentation results. At this stage, the
instrumenter results are not stored in the common datalaseffirther analysis, but are printed in mir files (mir:

MAQAQO Instrumentation Results).

e | UA script: parses the mir files and reproduce a structurpdesentation saved in MAQAO database. In this level,
MAQAO combine static and dynamic analysis, answers usdregjladd user interface possibilities and reload results

instrumentation.
The principal results are:

® Posted on CFG. The CFG printer, is used to generate hotpathutation. Hotpath results are reloaded from data bases

when reloading an assembly for which .mir has already beesepa
e Summarized in performance advisor.
e Summarized in new windows in MAQAO interface.
® To post the results of the instrumentation in the code askrmban explicit way.

The three previous points are generated witlinéernal interpreter script.

5. MAQAOPROFILE Architecture

MAQAO proceeds to code instrumentation automatically.sTikidone by injecting a limited number of extra-bundles,

namedassembly probesaround the targeted code fragments to monitor. These ésir@dke in charge of storing some

10 2007/1/27

Agsen"uy (S) Instrumented assembly (.s)
Instrumenter | | Printer Instrumented comperion —_
Instrumented Makefile
o e
tar.gz

e .m,
\ﬁ(’ﬂ T

Script LUA
= T
CFG Printer scripts
I / Code Decoration

MAQAOORACLE

Oracle Report

Figure 5. The MAQAOPROFILE process

specific registers in a dedicated memory zone. MAQAO enstitaisthe register stack remained unchanged by the
instrumentation (by analyzing allocated registers or bgirgl spill/fill instructions). This low level technique als to
minimize the main instrumentation drawback: instrumeaatatode altering the compiler code generation and optitioiza
chain behavior. Therefore MAQAO measures the real apjicdiehavior with minimal disturbance. An interesting side
effect of low level instrumentation is its very low run-tirogerhead.

MAQAO instrumentation can be done at function level, loogelebasic block level or instruction level. For all these
levels of instrumentation MAQAO monitors and stores theugadf the clock register and builds execution time profile.
Additionally MAQAO is able to store every register value npariated by the code and dynamically process it. Monitoring

value manipulated by a binary at run time is often refferedswalue profiling[9].

5.1 Time Profiling: Hot Path

For instrumentation done at basic block level, we have faumly one valuable usage: Hot path computation. Therefore
we specialize this level, and basic block instrumentasateidicated to production of hot paths. While classic taathss
gprof can isolate the most important function, its scope is tooavgdimited to almost the notion of function. Identifying
the path at run-time which crosses the whole program wherapiplication spends the most of its time is a key element
for understanding application behavior [10], [11].

Hotpath is based on the classic Bellman’s algorithm (BA)[Basically hot path computation is done in five steps:
¢ Basic-Block instrumentation

¢ |[nstrumented code execution

11 2007/1/27

® Dynamic results injection in the CFG and set-up for BA.
® Force BA to respect evaluation of function head (call sittejpendence)
e Execute again BA with path respecting function call/retiwhich means managing a call stack)

Step 1: Assembly probes are injected at the entry/exit of everydiaisicks.

Step 2: Thus at run-time, a counter is incremented each time thesponding edge of the CFG is taken.

Step 3:After the execution stage, once all counters are avail&@atrol flow graphs for all code’s functions are unified
(without duplicating a function graph, is the function idled several times). Back edges for loops are deleted taldwoi
trap the Bellman’s algorithm and to save computation timBAls complexity could approac® (n?) 2.

Step 4:0nce the CFG for the whole code is produced with all edgestatetbby their respective counter, return edges
are weighed correspondingly to the edge between the céddloek and the return block. These edges are then deleted to
force Bellman'’s algorithm to go through the function. Thiee Bellman’s algorithm is used to update the evaluation®f th
vertex (and not edges) An extension will be to evaluate xefte instance according to the latency in order to compute
the most expensive path, or to the number of instruction tomgde the largest path), but currently they are set to 1 as we
focus on frequently used pathes.

However the first basic block of each function as an evalaaet to 0, this prevents the algorithm to stumble on call
site. Therefore an understated assumption is that a functiold be considered as an edge with an evaluation equad to th
sum of the evaluation of its hot path (like introducing a gedae to its hot path). This can be seen as a recursive hot path
computation.

Step 5:Finally the critical path is parsed respecting functioriscahd returns. Taking advantage of this stage, multiple-
exit loops are examined and graph exploration is pushed thetpoint where the same edge is never taken twice. Result

of this procedure is depicted in Figure 6.

Instrumentation Data storage

Once the technical challenge of gathering data dynamitals/been fulfilled, an interesting question is how to extract

meanings from this vast amount of information. MAQAO sugpdwo forms for data storage:

¢ dispersion sensitiveany new data are dynamically compared to the previoushgdtdata. From this comparison data
are put in the corresponding histogram bucket. For implaaiem reason bucket sizes are powers of two. This allows

to build an accurate picture of data dispersion which isietiuo apply specialization techniques.

¢ order sensitivethe previously described method implicitly discards jdithe dynamic information. In fact, building
histogram drops the notion of sequence and execution drblerefore, the second storage method is a rotating buffer
where data are stored in the order in which they appear. Bhigiy important for instance to computed address

variation and to detect stride memory accesses.

2Notice that currently our hot path algorithm does not suppezursive function calls.

12 2007/1/27

MAQAG Ll MAQAO L=l

Fle @nalysis Instumentation Window Help Ble Analysis Instrumentation Window Hep
Project | quake.s | Functon | Project | quake.s | mane |

Zoom wit | zmemin | zoem out zoom it | womin | zomout
\ D D &= D) i &= B

Figure 6. Displaying Hotpath information in MAQAQ for 183.equake C@daa sample of its CFG.

5.2 Value Profiling

A key feature of MAQAQ is its ability to value profile the codewvarious granularity. Value profiling is often the missing
link between the observed behavior on the hardware and tiueenaf the application. This feature yields to numerous

optimization opportunities.

5.3 Instrumentation at Function level

As detailed in section 1.1.2 detecting an always strictlsifpee parameter was the critical point to improve FFTW4ealetl
by more than 40%. From MAQAO GUI it is easy to select a functionto select all application functions and monitor

their parameters (either in dispersion or order sensitivdah

5.4 Instrumentation at Loop level

Figure 7 details results gathered by instrumentation ap llevel of the SPEC FP 2000 benchmarks. We use the
compilations flags {fast, -fno-alias and so on) as reported by vendors on Spec website [13] exicapirter-
procedural optimization were disabletb¢ipo).

These number provide insight about code specialization opportunit@sshort loops where software pipeline and
other unrolling techniques are often low-performers. let,f¢his is specially important since low-level optimizatiare
always targeting the asymptotic performance, neglectirgjat-up effect as cold start. For a short trip, start-optacan
be the dominant one.

From a performance analysis point of view, these humbertafieg advantage of both time and value profiling. Time
profiling allows to give a precise weight to all executed Isoiherefore underscoring hotspot. Value profiling mositor
the iteration count. Correlating this information provddée relevant metric: i.e. which hot loops are short. Thitearc

illustration of the interest of centralized approach forfpemance analysis.

3 During our experiments we have to mention that two codesmtmgroblems within MAQAO instrumentation: 178.galgel digring
execution (after roughly a quarter of its supposed exenttiine). And 188.ammp is re-entrant and our instrumentagamot very
robust confronted to recursivity. Nevertheless, we chosake their results in consideration since they were ctergisvith experiments
conducted by other means.

13 2007/1/27

Overall: Average for the 14 Specs benchmark

Overall: Average for the 14 Specs benchmark eI
cumulative view

100% 100%

80% 80% A

60% A 60% A

40% A

20% | HHH
0% T‘T‘[]‘w‘

40%

20% A

Fraction of the Total Loop Time
Fraction of the Total Loop Time

PN —
P —
512 [

PN —

1024+

0% —nollo-_000_. o RN
e v e 2 8 3 8 8 ¥ § e 8 3 .
— Y wn e g
Number of iterations per loop Number of iterations per loop
(a) SPEC FP overall loop distribution (b) SPEC FP overall cumulative loop distribution

Figure 7. Loop Execution Time depending on loops number of iteratidimese graphs depicts the execution
time distribution per loop depending on the total numbeterfitions. Histograms summarize iterations weight
for an interval in power of two:]0,1],]1,2],]2,4],]4,8] @nso on. For instance the bar labeled 64 coalesces
all loops with a total number of iterations between]33,6djese two figures summarize results obtained on
the whole SPEC FP benchmarks suite. 7(a) depicts averagepen lzenchmark basis, i.e. each benchmark
is considered individually without weight related to itseeution time. 7(b) presents the same data but in a
cumulative histogram which is convenient to grab the sldpeap distribution. From these two graphs it can
be said than Spec benchmarks spend 25% of their loop timéwdtbps of less than 8 iterations.

5.5 Instrumentation at Instruction level

Knowing dispersion of value manipulated by each instructian be valuable to take optimization related decision. For
instance, characterizing address streams allows to dee&tconflict or aliasing problem. Observing that a givengas
almost always constant can justify the cost of high levelecgigecialization.

MAQAO currently supports the following rules: automatideetion of prefetch distance.

For prefetch distance estimation, the algorithm is striddgtvard: all the instructions within the loop are instrumed.

Data are stored in order sensitive way (rotating buffer).

1. Considering the address flow from the prefetch instractief 000 0xe000 0xf010 0xe010

2. Considering the address flow from a load instructimef00 O0xef10 Oxef20 0xef30 Oxef40 Oxef50 Oxef60

0xef70 0xef80 0xef90 Oxefal OxefbO OxefcO Oxefd0 OxefeO 0xeff00xf000

3. Proceed to pattern matching for the first prefetch add&isse both instructions are within the same loop they are
executed jointly (we do not handle case with if conversidhg first matching address in the load address flow (if any)

returns the prefech distance. For instance, here dataefetgred 16 iterations ahead.

Evaluation of the prefetch distance can also be done digtltzased on DDG. However, at the opposite of the static
module, instruction instrumentation handles data stregerleaving (an optimization used Itanium lag [14] to fetch

alternatively two data streams with a single prefetch uegton)

14 2007/1/27

6. MAQAORACLE: Performance Advisor

ICC outputs an optimization report, providing informatiom the success/failure of each optimization phase. Thisrtep
can be considered as an execution trace of the optimizataweps. The report neither gives any clue on how to cope with
some optimization issues, nor points out what are thesessstjust plainly states which optimization took place gnd

and with which value of parameter. The goal is thereforeedéfifit from MAQAO. However, it is interesting to make a
comparison between information collected by both tools QA® provides an analysis of this data while the optimization

report only reports raw data.

6.1 Performance Oracle

Gathering data and statistics is necessary for a perforentoad, but it remains only a preliminary stage. The most
important step is to build a comprehensive summary for esef-and extract manageable information. It is possible to
interpret performance data in numerous ways... and to lieTbg Performance Oraclés built over a set of rules and
metrics and act as an expert system to drive user attentibimvwhe performance landscape. Providing an expert system
to help the user to deal with complex architecture was don@R&Y’s AutoTasking Expert [15]. However ATExpert was
focused on parallelization issue and was neither as exiensor as sophisticated as MAQAQO'’s performance module.
Oracles rules are either purely based on static analysiseohardware counter and instrumentation information. A#s

are written in LUA [16] with the support of a MAQAO API. This QWA API allows to manipulate MAQAO internal
program representation and to write quickly compact rulésts, the Oracle is a library of high level rules which can be

extended according to user needs.

6.2 Hierarchical Reporting Approach

A classic pitfall for reporting tools is to overload end-usader a mountain of data. Therefore, this trend leads te this
initial goal which is to help in the decision process. Thedweef end-user differ, depending on whigvel the decision

is going to be made: is it to chose between two compilers ? [Besdifferent compilation flags for the whole application

? To tune specifically a given loop? Being aware of this, MAQ#&@anizes information hierarchically. Each level of the
hierarchy is suitable for a given level of decision to be tal@mplete loop characterization, loop performance aisly
function analysis or whole code analysis. Additionnalytfitan be set depending on the degree of confidence of Oracle

answer or the potential performance gain involved.

¢ The first and most exhaustive level is the instructions lgi@k. For each loop, selected instructions counts and-built
in metrics are displayed. These counts require some kngeléd be interpreted but they represent the exact and
complete input of what MAQAO is going to process in the uppagss. Instruction are coalesced per family (such
as integer arithmetic, loads instructions and so on) andtealon a per basic block basis. However the goal is not to
catch dispersion rules (hence the taxonomy) of the ardhitecbut to detail instructions that have been determined

as being of special interest. This instruction count is@vedl by built-in metrics Cycle cost per iterationissue cost

15 2007/1/27

per iteration Theoretical cycle bounds per iteratiohogether counts and metrics are exploited by Performanael©

rules. Rules also process results gathered during agplicatecution (instrumentation, hardware counter, cyslent).

* The second level, which is already an abstraction layey, @ports loop where some important performance features
are detected, thus is filtering out a large amount of nonreisgeata. Additionally results are reported in a useefidly

way (not just a bunch of number but clear sentences!)

¢ The third and fourth levels are summary tables. Whereaseotisply, for each routine and the whole code, a
report counting the number of detected performance issesding these tables is quick and was designed to ease

comparison.

6.3 Example of Oracle Output
Here is an example of Performance Oracle output for a loopreéSponding source code is:

DO I =1, NPSTACK
ZZ(I,K)=0 should be replaced by a call tomemset
END DO

Results Sample [code M - function Chociso]:

=> LOOP SOURCE LINE 426 ASSEMBLY VERSION 2 [MAQAOracle internal loop. id 265]
MAQAO report: No floating point operations. few or no integer operation.
check source code and consider call to memset.
MAQAO report: Scheduling is matching optimal bound.
This is a clear sign of code quality but not a proof (beware of code bloating).

MAQAQ report: Analysis hints unroll factor of 8

Performance Oracle results are displayed in the MAQAO fater. In front of each loop of the source codg,gives
access to the information computed by the Oracle concetthisdoop. Note that severd) in front of the same loop
means that the function of the loop has been inlined sevatakt In interactive mode MAQAO can give different advices
according to the inlined version, since the compiler mayehehanged the optimizations according to the inlining site.

Note on Loop fusion: this high level loop transformation ifficult to detect at the assembly level. The list of fused
loops is given by the source line number of the fused loopis ififormation is not found by MAQAO since it would need

a detailed analysis of the source code. Therefore loopritisinot caught by the Performance Oracle.

7. Related Work

Two main classes of low level instrumentation tools can bated to MAQAO. One class is composed of performance
analysis tools aiming at understanding application beairds@sed on hardware counters. Fall in this category toals su

as VTune (self-contained program), or PAPI (user-indepat)d The other family of tools is more focused on code

16 2007/1/27

MAGAO =i e
o |
ks | auake.c | Sal| 1PC | orace Report | Orace Guery |
Amount o nformaton to spiay | Type of mformation o ipiay | Raport priorty o
- # Comment bouns i ottcatiors ! -

T 1 Prefixe Tag. W Versioning i Possible Gain DA S L Possible Gal
i surme Tag ¢ sontware ppeine = Prtormance Gun = Portonnanco Gas
= Tag moanng

. Known workaround(s)
A b4 64
prr— (e Avghs 467110 -50.6)
= | |
577 i Joop 1D : 22
S ot Lne - e L 683
r— tats forloop 22|
| [Report.
Pussite branch ufor avertow
- g
% o ponaty
) it L S
toser operations ger opratons
o call t memset il to memsat
-]
s Lonp 10 : 23 o0 : 23
/ o lne - 607 i L - 07
Display analysis report J] =
T . -] —

(a) Loop selected in the CFG: Performance Oracle
displays analysis. The loop is an one-cycle loop

and is similar to a
be replaced by a
memset routine

memset routine. Thus it should
call to the hopefully optimized

MAQAO =) e

Fle Static Analysis _Instrumentation

|

Prjec | Program | unction |

Zvom it | zoom i | za0m 0w

darpy darpy10.200 43 | main. | Sa | IPC | Orace Roport | comparestats.ua |

xtowar |

TEL PRESENTATION/darpy._s/darpy_Sapyl0 200 2.2
/INTEL PRESENIATIONde75y_o/dexpy_dwrpyl0 200 4.
/INIEL_PRESEMTATION /dapy »/Gary._ darpyll 200 3.5
o INTEL PRESEXTRTTON/dasipy /sy _Sexpyl0 20071 =

(b) Analysis of the loop with inclusion of dynamic
information. Performance is bounded by Memory.
While the perfect static schedule is estimated to 1
cycle per Iteration instrumentation results show that
the average loop trip count is 11 and the cost 5.5
cycle per iteration. Static estimation is exceeded by
a factor of 5.

Static Dynamic
Loop i Static estimated cycles | | Loop iu] Dynamic estimated cyctes
16 1zrN 577 55 (c Avg)417.79°220545(N) (-92141495.5
E AT 5.33 45 (e Avg)252.24 151172(N) (=36131625.21
52 1M 533 31 (itc Avg)1073.64"30168(N) (-32389571 5
51 1 533 13 (c Avy)953.26"30168(N) (~28757947.66
a3 16°N 5.33 16 (ilc Avg)357.63 30168(N) (=10768981.84
50 1em 533 15 (ic Avg)319.12°30168(N) (-9627212.16)
a8 16 533 46 (tc Avg)247.47°30168(N) (~7465674.95)
55 106N 53 12 (e Avg)164.05730168(N) (~4949060.9)
57 a216n 527 o (e Avg)110.25"30168(N) (=3326022)
15 16N 5.23 17 (i Avg)25.62"30166(N) (772304.16)
58 1m 475 29 (itc Avy)SE3.3975(N) (-2816.95)
53 1 475 i (e Avg)188.2°2(N) (<376.4)
PR P 467 2 (e Avg)30.19"T1(N) (=332.09)
17 e 462 5 (e Avg)21. 7711 (N) (=239.47)
1 = a37 3 (e Avg)79.673(N) (<238.8)
o 367N+ 108 36 1 (i Avg)I05.8572(N) (=211.7)
1B 1an 35 19 (e Avg)10.93711(N) (120.23)
% TNeT a5 4 (e Avg)9.39711 () (<103.29)
33 1w 3.25 20 (e Avg)49.63°2(N) (99.26)
61 13n 3.25 21 (e Avg)31.64'3(N) (94.92)
5 N 3 26 (itc Avg)7.36711 (N) (=61.18)
E I 3 28 (itc Avg)B77"1 () (74.47)
E 3 lzs e avgyssearzqny (=72.48)
o e 3 23 (c Avg)12.36"5(N) (=61.8)
3 LIETRST] 2.75 22 (itc Avg)5.46+11 (N) (-60.06)
R 27
z 5n 25
13 e 239
EZA] 2
% 2H+10 2

o

(c) Writing a rule in LUA to analyze the whole code

(d) Rule result: full comparison with static

behavior. One may be interested in knowing 1/ the and dynamic performance including hot

hot loops and 2/ if hot loops are far from their static

loops profiling information. Loops are

schedule. Such request can be easily expressed insorted by decreasing weight and dynamic

LUA. This language embedded in MAQAO allows

and static performance are compared. From

to access all the internal data structure which are a a pure static evaluation loop 16 as a static
repository of code performance information.

schedule of 127 cycles per iteration which
is 5 times the value of its optimal bound.
Additionally it appears that dynamic cost
per iteration is 357 cycles!. Clearly this loop
worth investigation.

Figure 8. Example of Oracle analysis for a selected loop from the Ifiake CFG.

17

2007/1/27

manipulation like Salto, or code instrumentation such a®Klor PIN. However MAQAO broad approach is more related
to the path chosen by HPCview or to a lesser extend by Fineibésdater one being mor focused on parallelization than
code optimization.

Hardware monitors are extremely helpful for performangertg, they are the backbone of analysis tools liRane
[17], Caliper [18], Cprof [19]. Their usage is so widespread that an API gets stardsddo describe their access [3].
Nevertheless, hardware counters are limited to the dyndescription of an application and this picture needs to be
correlated with other metrics. For instance, from the hamdvwounter point of view, code bloating (or even dead code)
filling up functional units and leading to high IPC is seen a®sirable behavior.

On the static sidesalto [20] is a framework dedicated to the implementation of carpEssembly code transforma-
tions. After being parsed, assembly code is seen as a doitexft C++ objects plugged in a user-developed application.
Salto is more a toolkit than a tool and could appear as a back-end®@AD diagnosis chain: once a problem is identi-
fied by MAQAO, some transformations have to be applied by SAltd solve this problem. DPCL [21] (Dynamic Probe
Class Library) is a set of C++ classes from IBM originally éd®n Dyninst [22]. The purpose is to help developers to
support dynamic instrumentation of parallel jobs. Protagshwe inserted in a running binary to check the hardware coun-
ters or cycles for any function of the monitored code. Evatyifamic instrumentation is very appealing, DPCL does not
include any notion of code inspection.

ATOM [23] (for Alpha assembly) andin [24] (for Intel architectures assembly) instrument asdgmbdes (or even
binary forPin) in a way that when specific instructions are executed, theycaught and user defined instrumentation
routines are executed. While being very useftdm andPin are more oriented toward prospective architecture sinaulat
than code performance analysis. EEL (Executable Editibgdry) [25] belongs to the same categories of tools. This C++
library allows to edit a binary and add code fragment on eddekissambled application CFG. Therefore it can be used
as a foundation for an analysis tool but does not provideoperdnce analysis by itself. Currently EEL is available on
SPARC processors.

HPCview [26] andFinesse [27] (this one being more oriented toward parallelizatiadyiress the analysis problem
from static and dynamic sideBPCview tackles the same problem as MAQAO: the complex interact&twéen source
code, assembly, performance and hardware moniikGview presents a well designed GUI based on web browser,
displaying simultaneous views of source, assembly codedym@mic information. This interface is connected to a
database storing for each statement of the assembly codaraay of its dynamic information. Based on control flow
graph and a tool named oop, HPCview builds abstracted representation of code loop structusgsd an XML interface).
Some important differences should be underscored: whilaetabdse is embedded in the application, end-user has only
limited opportunity to explore the code and define new queteCview also lacks value profiling which can lead to
powerful, yet simple to implement optimizations such aseceersioning.

Shark [28], [29], developed by Apple offers a comprehensiterface for performance problem. As MAQAQ it is located

at the assembly level for its analyzes, displays source asdeell as profiling information. As most of Apple’s software

18 2007/1/27

the GUI is extremely well designed. However Shark lacksrimaentation and value profiling, code structures are not
displayed and the Performance Oracle advices are curienitgd to very few messages: alignment, unrolling or &tv
(vectorization). Additionally as most of Apple’s softwaités very proprietary and does not offer open-source siorgpt
language or standard database. Nevertheless it remaindvanced interface, with an extensive support of dynamic
behavior (including call stack, garbage collection, byjnanalysis), and it underlines the need to think performance

software beyond gprof.

8. Conclusion

With MAQAOPROFILE, our MAQAO instrumenter, we have provehew the instrumenter is merged as MAQAO module
can providing more powerful analytic capabilities thansérig tools. MAQAQO is able to drive the instrumenter and to
take advantage of dynamic behavior results. By combiniatcsand dynamic analysis allows to refine quickly code
performance analysis and offers capabilities complenmgtdethe standard performance counter based tools.
MAQAOPROFILE's ability to produce different result leveh&bles user to choose the granularity and to define the lag
he wants to introduce in his code. Project context is ableetfopm analysis on multi sources and to instrument those
project. Based on MAQAOPROFILE and MAQAORACLE, the perfamee analysis methodology proposed allows to
perform efficient code optimization. Currently MAQAO passmdes generated by different compilers (IA32, 1A64, x86),
but MAQAOPROFILE is limited to itanium architecture. We as@rking to port MAQAOPROFILE to x86. We hope
MAQAO will continue to be an effective platform for embeddadhitecture. Another architectures, but more prospectiv
is the ST200 and TriMedia.

In short terms the GUI will be re-designed as a Web interfaibe.idea is to go toward a client/server architecture, where
MAQAO would be executed remotely and driven through a welnvises. More interface work is also planned for a smarter

support of hardware counters.

References

[1] L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J-T. A@yiva, W. Jalby MAQAO: Modular Assembler Quality
Analyzer and Optimizer for Itanium 2 M/orkshop on EPIC architectures and compiler technol&gan Jose, 2005.

[2] Stéphane Eranian, Perfmon project home page: wwvihhpmlom/research/linux/perfmon HP Labs

[3] Jack Dongarra, Kevin S. London, Shirley Moore, Philip 8¢y Daniel Terpstra, Haihang You, Min Zhou. Experiences
and Lessons Learned with a Portable Interface to Hardwaferfence Counters. IPDPS 2003: 289

[4] Montecito Processor wikipedia http://en.wikipediaviki/Montecita(processor)

[5] Matteo Frigo and Steven G. Johnson, The Design and Imgteation of FFTW3, Proceedings of the IEEE 93 (2),
216-231 (2005), Special Issue on Program Generation, @attion, and Platform Adaptation, www.fftw.org

[6] Intel IA-64 Architecture Software Developer’'s Manual, Wok 3: Instruction Set Referenaevision 2.1 edition.
http://developer.intel.com/design/itanium/family.

[7] Intel ltanium2 Processor Reference Manual for Softvizegelopment and Optimizatiohttp://download.intel.com/design/Itaniul

[8] L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J-T. A@yiva, W. Jalby Exploring Application Performance: a New
Tool for a Static/Dynamic Approach lnos Alamos Computer Science Institute Symposianta Fe, NM, 2005.

19 2007/1/27

[9] B. Calder, P. Feller and A. Eustace Value Profiling, Pestiegs of Micro-30, December 1-3, 1997, Research Triangle,
North Carolina

[10] James R. Larus, Whole program paths, PLDI '99: Procegtipf the ACM SIGPLAN 1999 conference on
Programming language design and implementation, 199@92&9—269,

[11] Gilles Pokam and Francois Bodin, An Offline Approach ¥Wghole-Program Paths Analysis Using Suffix Arrays,
LCPC, 2004, pages 363-378

[12] Richard Bellman, On a Routing Problem Quarterly of ApdIMathematics 16(1), pp.87-90, 1958
[13] Standard Performance Evaluation Corporatioity://www.spec.org/cpu2000/results/res2006q2/

[14] G. Doshi and R. Krishnaiyer and K. Muthukumar Optimizisoftware data prefetches with rotating regist2@®1
International Conference on Parallel Architectures anch@ulation Technique2001, Barcelona, Catalunya, Spain

[15] John Kohn and Winifred Williams, ATExpert, Journal cdrdllel and Distributed Computing 1993 vol. 18 Issue: 2,
p. 205-222

[16] Roberto lerusalimschy and Luiz Henrique de Figueiradd Waldemar Celes Filhdua — an Extensible Extension
Language "Software Practice and Experience”, 26(6):635-652, jL@@6. http://www.lua.org

[17] Intel Corporation. VTune Performance Analyzer hitpww.intel.com/software/products/vtune

[18] Robert Hundt, HP Caliper: An Architecture for Performea Analysis Tools, Proceedings of the First Workshop on
Industrial Experiences with Systems Software, WIESS 2@@fipber, 2000, San Diego, CA, USA. USENIX 2000
http://www.hp.com/go/caliper

[19] http://sourceforge.net/projects/cprof

[20] Erven Rohou, Francois Bodin, Andre Seznec, Gwenddtdle Francois Charot and Frederic Raimbault. SALTO :
System for Assembly-Language Transformation and OptitiwzaRR-2980, 27 p., citeseer.ist.psu.edu/rohou96s$ditd

[21] Luiz De Rose, Ted Hoover Jr. and Jeffrey K. Hollingsworhe Dynamic Probe Class Library: An Infrastructure
for Developing Instrumentation for Performance Tools, wptaols.org/projects/dpcl IPDPS 2001: 66

[22] B. R. Buck and J. K. Hollingsworth, An API for runtime cegbatching Journal of High Performance Computing
Application, 14(4):317-329, 1994.

[23] Amitabh Srivastava and Alan Eustace. ATOM - A SystemBailding Customized Program Analysis Tools. PLDI
1994: 196-205

[24] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and Ardf@nidhi. Pinpointing Representative Portions of Large
Intel Itanium Programs with Dynamic Instrumentation Mi&®, Portland, OR., 2004

[25] James R. Larus and Eric Schnaar. EEL: Machine-Indegmirieixecutable Editingappeared in the ACM SIGPLAN
PLDI ConferenceJune 1995.

[26] J. Mellor-Crummey, R. Fowler and G. Marin. HPCView: Aotdor top-down analysis of node performance. Com-
puter Science Institute Second Annual Symposium, SantBlMe October 2001. 2001, citeseer.ist.psu.edu/mellor-
crummeyO0lhpcview.html http://hipersoft.cs.rice.eqhatioolkit/papers.html

[27] N. Mukherjee, G.D. Riley and J.R. Gurd. INESSE A Prototype Feedback-guided Performance Enhancement
System. Parallel and Distributed Processing (PDP) 2000¢8%$y Greece, January 2000

[28] Optimizing Your Application with Shark 4 http://dexeder.apple.com/tools/shadptimize.html
[29] Optimize with Shark: Big Payoff, Small Effort http:#geloper.apple.com/tools/sharkoptimize.html

20 2007/1/27

