
MADRAS: Multi-Architecture Binary Rewriting

Tool

Technical report

Cédric Valensi
University of Versailles Saint-Quentin en Yvelines

September 2, 2013



Chapter 1

Introduction

In the domain of High Performance Computing, performances are obtained in
the price of an increased complexity at all steps of a program life cycle, from
the compilation chain to the processor internal architecture. While the need to
improve performances is still critical, this complexity has made this task even
more difficult. The field of performance analysis aims at finding the best way to
profile the behaviour of HPC applications in order to identify their bottlenecks,
their causes, and how to improve them.

A possible way of achieving this is through the analysis of the source code
of applications. While this is one of the easiest methods, it is not not the most
precise nor reliable. In order to take advantage of the architecture abilities, com-
pilers can perform extensive code transformations when generating the binary
executable from the source code, like loop unrolling or constant propagation.
These transformations may significantly alter the control flow of a program from
its source representation and render most deductions made from the analysis
of the source code incomplete at best. It may also be interesting to identify
which transformations were performed by the compiler, in order to detect in-
teresting transformations that were missed because of the way the algorithm
was expressed in the source code. Finally, the source code of an application
may not be fully available for analysis, for instance because of confidentiality
restrictions.

It is also not always possible to retrieve all useful informations from a static
analysis of the code. Some of them, like the timings of code segments, can not
be deduced from such an analysis without a significant error margin, if at all. It
may therefore be useful to be able to perform transformations on the program,
such as inserting probes, in order to retrieve additional informations at run
time. Performing such transformations in the source code can however impact
the compilation process and alter the program behaviour, as the compiler will
take the altered code into account when performing its optimisations. This
may lead to very different performances from the original, thus voiding the
informations gained from those transformations.

It is therefore interesting to be able to directly analyse the assembly code
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generated by the compiler, since this is what will be actually be executed by the
processor. Most compilers allow to generate assembly files instead of binaries
from a source file. However, it is usually not possible to generate such a file
for the whole program if it was compiled from multiple source files, which is
the case for most real applications. This will not be possible either when the
source is not available. Additionally, while it is much closer to what will be
actually executed by the processor than the source code, an assembly file may
lack some informations useful for analysis. For instance, the assembler may add
padding instructions for alignment when converting the assembly code to binary,
which could have a non negligible impact on the overall execution time. Also,
some informations found only by analysing the binary code, like the length of
instructions, may be needed by analysis, for instance to compare with the size
of the instruction cache. Finally, if the code must be instrumented, it will still
need to be assembled after modifying those assembly files.

Figure 1.1: Location of binary analysis in the compilation chain of an executable

The solution would be to directly process the binary file, for analysis and for
instrumentation, as illustrated in figure 1.1. This implies being able to decode
the binary code in the file back into assembler code through disassembly. In-
strumentation would be performed by directly modifying the binary file through
patching.

Disassembling presents multiple challenges, since a binary file, being in-
tended for the processor, may lack some informations useful to human beings
to analyse its contents, or require some additional processing to retrieve. As
for patching, since a binary executable, unlike a linkable file, is not intended to
be modified, its internal structure can make changes complex to perform while
keeping the executable functional.

In this report, we present MADRAS (Multi Architecture Disassembler Rewriter
and Assembler), a tool allowing to disassemble and patch binary files and avail-
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able as an API. The disassembler functionality allows to decode the assembly
instructions contained in the file and build structures representing them, while
the patcher functionality allows to modify the assembly instructions in the file
and save the result as a new binary executable.

Figure 1.2: Global description of the MADRAS tool

MADRAS relies on MINJAG to generate the architecture specific files used
by the disassembler and assembler, ensuring an easy implementation of other
architectures and update of existing ones.

1.1 Organisation

Chapter 2 describes the overall structure of binary files and assembly languages,
and briefly presents different architectures.

Chapter 3 focuses on disassembly, presenting its challenges and common
solutions, as well as our implementation choices and future works.

Chapter 4 focuses on patching, describing the challenges and common solu-
tions to patching files, our choices for addressing them, and the future works on
this subject.

Chapter 5 concludes this report.
Annexes contain a detailed description of the MADRAS API in annex A,

the algorithms used by the disassembler in annex B and by the patcher in annex
C.
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Chapter 2

Context

Binary executable files share common characteristics across architectures and
platforms that need to be taken into account when analysing and modifying
them. In this chapter, we will briefly present these characteristics, focusing on
those more likely to present issues when disassembling or patching files.

2.1 Binary executable

An executable is a binary file with a specific format allowing the operating
system to identify how to load it into memory and execute it. The same format is
usually used for relocatable files, which are used as intermediary files generated
by a compiler and used by the linker to generate an executable, and library
files, which contain common shared code usable by executables. This format
can also be used for representing dump files, generated after a program crash
for debugging.

A binary executable contains all the informations needed for its execution.
It can however rely on external libraries for the definition of some functions
or variables. Those executables are called dynamic executables. Stand-alone
executables are called static executables.

A relocatable file contains compiled code, and informations used by the linker
to generate a functional executable from it and other related files.

2.1.1 General structure

Executable files commonly contain the following elements:

• Format identifier (“magic word”)

• Header describing the structure of the file

• Binary code to execute

• Variables used by the code
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• Directives for the OS on how to load and execute the file

• Relocation tables

• Informations on how to invoke external functions for dynamic executables

• Optionally:

– Debug informations, added if requested by the compiler

– Labels, depending on compiler settings.

In most binary formats, files are broken down into sections. A section con-
tains one given type of data, like code, variables, relocation, etc., and other
specific informations, such as the virtual addresses where the data and code
must be loaded when executing the file and the rights to set on the memory
segments where it is loaded. It is possible that a section is not loaded into
memory when running the program, if its contents are not needed by the exe-
cutable. Sections are identified by a header specifying at which offset in the file
the section’s data is contained.

Some formats also use the concept of segments, regrouping one more more
sections. In these cases, segments are used by the loader, while sections are used
by the linker when building the file.

2.1.2 Symbols

Binary files can contain symbols, which are strings associated to an address
and possibly a type characterising what they represent. They can be used to
reference specific locations in the file such as the beginning of a function in
the code section or a variable in the data section. Most of those symbols are
however not needed by an executable file, and as such may be removed without
affecting its behaviour. The most important exception to this are relocations
(see 2.1.4), which explicitly need a symbol to be performed.

It is also important to note that, while a binary format may define specific
types for identifying the uses of a symbol, those are not mandatory either. It
is therefore possible for a binary file to contain symbols actually corresponding
to the beginning of functions, but being identified with a generic non indicative
type.

The compilers for certain languages, like C++ or Fortran, use the concept
of name mangling, where the symbols stored in a binary file are not the same
as those used for a variable or function name as they appear in the source code,
but are instead run through an encoding (mangling) algorithm. In this case,
it is necessary to decode the names found in the file to retrieve the original
names. The algorithm used to mangle the names depends on the language and
the compiler used to generate the file. [38] presents some of those algorithms,
which are not always available and may require some reverse engineering to
retrieve.
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2.1.3 Variables

An executable can contain variables, usually those that may be accessed from
anywhere in the program (global variables) or have a fixed value, such as a
character string or a branch table used by a switch operation; dynamically-
allocated variables are not defined in an executable. Variables that can be read
or written are usually in a different section or segment than those that are read
only, allowing to set the appropriate rights on it at run time.

Some systems may adopt a special behaviour in regard to variables whose
value is not initialised at compilation time. Those variables are defined in a
special section that does not take any space in the file, but whose attributes
specify a size in memory. The loader is responsible for allocating the necessary
space for those sections when loading the file in memory.

2.1.4 Relocation

Relocation is the process of updating a reference address in a file after it was
generated. Relocations are usually performed through a relocation table which
references a location in the code or data and the symbol to which it is linked.
When the address of the symbol is known, the reference will be updated accord-
ingly. It is mostly used by the linker during compilation: a compiled relocatable
file will contain relocation tables for all external symbols, which will be used by
the linker to reference the code or data corresponding to those symbols.

Relocation can also be used at run time when executing a file depending
on external resources, like shared libraries. In this case, the loader will be
responsible for resolving the location of the symbol referenced by the relocation
and update the loaded code accordingly.

2.1.5 Referencing an external source

Most recent file formats allow to reference code or variables defined in an ex-
ternal file. The most common use for this the invocation of functions defined
in a shared library. The address at which the external reference is loaded in
memory is not known when the executable is generated, so a relocation table
(as described in 2.1.4) must be used. References to an external source are usu-
ally redirected to a specific section linked to a relocation table. Depending on
the system and properties of the executable, the addresses can be filled either
during program loading or when they are accessed for the first time.

2.1.6 Debug information

Debug informations are not needed for a standard program execution a program,
but are used when running it through a debugger utility. They are usually stored
in a separate section that may not be loaded into memory when running the
program. The format of those sections may be independent from the format
representing the executable.
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Debug informations aim at allowing the debugger to establish the relation
between the source code and the binary file, and as such can contain corre-
spondences between binary addresses and lines in the source code, or between
memory locations and variable names.

2.1.7 Common binary formats

Here is a quick overview of the most important binary formats. We will focus
more closely on ELF as it is the format with which we worked more extensively.

The a.out format

The a.out [6] format, used on older Unix systems, is one of the first format for
binary files. It has been now mostly replaced by the COFF then ELF formats
in the Unix/Linux environment. However, it presents most of the core concepts
used in more modern formats.

a.out files are broken down into sections, containing the executable code,
symbols, relocations and data. A header contains the sizes of the various sec-
tions, and begins with a branch instruction to the entry point of the executable
code. The loader ensures that the program does not run past its size by setting
a break at the end of the text and data sections.

The symbols section is used for referencing functions and variables defined
in other files. The relocation section is used by the loader to initialise pointers
to other files.

More recent variants of the a.out format allow to set the text section as read
only. Debug informations can also be stored in special entries of the symbol
sections.

The COFF format

The COFF (Common Object File Format) was introduced on more recent Unix
systems, before being replaced by ELF. It is used by Windows in conjunction
with PE (see 2.1.7) and some of its variants are used by IBM AIX (XCOFF
[29]) or Texas Instrument ([13]).

COFF files are broken down into sections. Sections are identified through a
header containing informations on their respective offsets in the file, sizes, and
virtual addresses where to be loaded into memory. The file contains a header
specifying where the section header is located in the file, as well as the size of
an optional second file header. This header is used when the file is executable
to specify the program entry point and the sizes to load in memory.

A COFF file can also contain a relocation table, and a special section storing
line numbers for debugging.

The ELF format

ELF (Executable and Linkable Format [15] [48]) is the format used by the Unix
and Linux operating systems. It is used for object files, executable files, library
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files, and core dump files. ELF is an evolution of the a.out format.
The contents of an ELF file can be represented as a table of either sections

or segments, each being identified in a distinct header. The section header
is mandatory in an object file while the program header is mandatory in an
executable file or a library.

According to the standard, the section header is optional in an executable
file, however compilers routinely keep it in executable files. A segment usually
encompasses multiple sections, but the standard does not specifies that the
boundaries of a segment matches with those of sections.

An ELF file always contains a general header identifying the file type and
the offsets in the file of the sections and/or segments headers.

Segments contain the virtual address at which the corresponding bytes from
the file must be loaded into memory when executing it, as well as the rights to
set on those addresses. A standard ELF executable usually contains a segment
containing the program header, a segment describing the interpreter to use
when executing the file, a readable and executable segment containing the code
and the read-only variables and a readable and writeable segment containing
the read-write variables. Other segments may contain informations relative to
external libraries for dynamic files.

Sections in an ELF file follow the general description (cf. 2.1.1). Unlike seg-
ments, sections can be named. The standard does not impose a strict constraint
on sections names, and more than one section can have the same name.

Common sections contain the executable code (usually named “.text”, with
the sections “.init” and “.fini” containing respectively initialisation and termi-
nation code), read-only variables (“.rodata”), read-write variables (“.data”),
non initialised variables (“.bss”), relocation sections (named by the section they
reference prefixed with “.rela”), and string tables used for labels (“.strtab”),
section names (“.shstrtab”) and dynamic symbols (“.dynstr”).

ELF file can contain debug informations, in the DWARF format, usually not
loaded when executing the program. DWARF [14] is an independent format not
tied to ELF, and the debug informations stored in those sections depend on the
compiler used. Common informations stored are the compiler name and version,
the association between line numbers and instructions addresses, the original
function names (without the mangling if present), and function parameters,
start addresses, and local variables.

The Windows PE format

The PE (Portable Executable) [53] [24] format is used by Windows-based op-
erating systems. It is an evolution of the COFF format and is occasionally
referred to as COFF/PE.

A PE file contains a MS-DOS header, used to display an error message if the
file is run on a system unable to support it. This header also contains the offset
in the file of the PE header. PE files are broken down into sections, identified
in a section table referenced in the PE header.

Debug informations are stored in the read only data section.
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The Mach-O format

The Mach-O (Mach Object [27]) format is used by systems based on the Mach
kernel ([30]), the most prominent being Apple Mac OS X. Like ELF, Mach-O
is an evolution of the a.out format, and both share similar concepts.

Mach-O files are broken down into sections and segments, a segment con-
taining zero or more sections. The header specifies at which offsets the various
sections and segments can be found in the file. The header also contains load
commands allowing to specify additional information about the file, like the
shared libraries defining the functions used in a dynamic executable.

The AIF format

AIF (ARM Image Format [8]) is a simple format used for executables, while ALF
(ARM Object Library Format) is the corresponding format used for libraries.

AIF files use a header specifying the entry point of the executable, a code
image and a data image. An AIF executable can relocate itself after being
loaded, using a special self-relocation code and a relocation list stored in the
code image.

2.2 Assembly language

Assembly is a low-level language directly representing the operations performed
by the processor. Unlike most compiled languages, assembly is specific to a given
processor architecture, as it directly depends on the processor instructions and
registers sets.

An assembly statement is an instruction. Instructions are composed of a
mnemonic, which is a command to be executed by the processor, and a list of
operands. Operands can be registers, memory addresses or immediate values.
Mnemonics can be roughly categorised between the following operations:

• A numerical operation between the operands

• The affectation of a value, immediate or stored in a register or memory
address, to another register or memory address

• Branching of the control flow of the program to a given address

Instructions in a program written in assembly language are executed by the
processor in the order into which they appear in the assembly source, until a
branch instruction is encountered. Assembly language use labels to reference
the destination of branch instructions. Special directives also allow to declare
some labels as functions; this is especially useful for declaring functions intended
to be invoked from a different source, such as in the code for a shared library.

Most assembly languages include a no operation instruction, usually called
nop, that does not perform any operation. Such an instruction can be used
as filler to align code or to temporarily stall the processor and ensure data
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dependencies are broken. Compilers may alternatively use instructions that
don’t actually affect the control flow nor the data set, like exchanging the content
of a register with itself, in place of the explicit nop instruction.

2.2.1 Binary encoding

The encoding rules for an architecture specify how to translate assembly instruc-
tions into binary code, a process called assembly. Those rules usually establish
a one-to-one correspondence between both representations, although in some
cases different instructions can represent an identical operation, and as such
be indifferently encoded as one or another. For instance, an instruction whose
mnemonic represents the swapping of values between both of its operands can
accept any order between its operands for the same operation, and as such ac-
cept different encodings. Some mnemonics can also be homonyms of each others.
Finally, some architectures may define macro instructions, that represent more
than one instruction, and as such are assembled into the binary codings of all
of these instructions.

In binary code, branch instruction do not use labels to reference their desti-
nation, but instead use the address of the destination instruction. The only use
of labels in binary code is for relocations tables.

Depending on the architecture, encoded binary instructions can be of dif-
ferent length in bits. There are no separations between instructions in binary
code.

2.2.2 Addressing

Branch instructions can use two modes of addressing to identify their destina-
tion:

• Direct addressing: the destination is identified by a numerical value rep-
resenting either the absolute address of the destination or the offset from
the current instruction

• Indirect addressing: the destination’s address or offset is stored in a mem-
ory or register operand

Similarly, memory addresses are usually identified either as an absolute
value, the values stored in one or more registers, or the sum of both. How-
ever they can also be identified by the offset from the current instruction; such a
mode is mainly used for referencing memory locations defined in the executable,
as the address of dynamically allocated variables would be unknown before run-
time and may need a relocation. Some architectures represent these addresses
as being based on the program counter or instruction pointer, considered as a
read-only register.

10



2.2.3 Overview of different architectures

Below is a quick presentation of some of the most used architectures, focusing
more closely on the Intel x86 architecture as we worked more extensively with
it.

Intel x86

The Intel x86 architecture [20, 18, 19], also called IA-32 or x86-32, is a CISC
architecture used by the Intel processors since the 8086 version. It is also used
by AMD processors [1, 2, 3, 4, 5]. It ensures backward compatibility with all
previous versions of the processors and as such defines more than 1000 different
mnemonics. The architecture undergoes frequent evolutions and new instruction
sets are added every year.

x86 assembly instructions accept zero to two operands.
Their binary encoding instructions vary between one and fifteen bytes. Among

the factors causing an instruction length to vary are legacy prefixes. An instruc-
tion can accept up to four different one byte prefixes in any order, and a given
prefix may appear more than once. Another factor is the length over which
numerical values are encoded, one to four bytes depending on their values.

One particular specificity is that most direct branch instructions exist in two
variants of different length: one variant is coded on five bytes, with a signed
offset coded on 32 bytes, while the other is coded on two bytes with an offset
encoded on one byte.

x86-64 The x86-64 architecture, also known as AMD64 or x64, is an evolution
of x86 to support 64 bits processors. The Intel x86-64 architecture allows access
to 16 64-bits general purpose registers instead of 8 for x86. It is possible to
access only the 32, 16 or 8 least significant bits of those registers, thus emulating
registers with this size, and ensuring backward compatibility for codes using
those sizes of registers. The SSE extensions allow access to 128 vector registers,
and instructions can accept up to three operands. The AVX extension extends
those registers to 256 bits, with instructions accepting up to four operands.

x86-64 instructions use an additional optional 1 byte prefix (REX) to notify
that an instruction uses 64 bits operands and to access the additional registers.
The AVX extension uses another 2 or 3 bytes prefix (VEX), to extend the
functionalities of the REX prefix and access the new 256 bits registers. The
latest extension AVX2 allows to access non-contiguous memory addresses to
perform gather or scatter operations on vectors.

In x86-64, all direct branch instructions use relative addressing. The ar-
chitecture also supports the addressing of memory locations relatively to the
current instruction pointer.

Intel Xeon Phi

Intel Xeon Phi [23, 22] is the latest Intel coprocessor architecture. It is based
on Intel x86-64 processors without the SSE nor AVX extensions, and as such no
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access to the 128 or 256 vector registers, but instead offers access to thirty-two
512-bits vector registers.

The memory or vector register operands of a Xeon Phi assembly instruction
can accept a modifier to tweak their use. Such a modifier can either be a flag
specifying conversions to apply to the operand, a cache line eviction hint, or a
mask, defined in a special register, specifying which elements in a vector will be
affected by the operation.

Some conditional branch instructions in Xeon Phi can accept two operands,
representing the destination and a mask specifying the condition to apply to
the branch.

Binary encoding of Xeon Phi instructions uses a four bytes prefix (MVEX) to
encode the new features of the architecture. Another specificity is the possibility
of compressing offsets used in memory addresses by dividing the encoded value
by a given factor.

Intel IA64

The Intel Itanium architecture [21], also called IA-64, is a parallel Intel archi-
tecture distinct from x86, although IA-64 processors allow to run IA-32 appli-
cations. The architecture allows parallelism at the instruction level, and offers
specialised mechanisms for handling conditional execution of instructions.

The architecture defines 128 virtual general purpose 64-bits registers and
128 82-bits floating-point registers, which are mapped to a stack of physical
registers allowing for an easier rotation of registers. Other registers are used
for storing the result of compare instructions and the target address of indirect
branch instructions.

Itanium instructions accept at least three operands, and use a predicate for
identifying if the result of the instructions shall be kept or discarded. Instruc-
tions are grouped into bundles, composed of three instructions and a template
specifying the type of instructions it contains.

In binary, all instructions are encoded on a fixed length of 41 bits, and the
templates on five bits, thus making the encoding of a bundle 128 bits long.

Power ISA

Power ISA [28], evolved from the PowerPC, is a RISC architecture used by IBM
and Motorola processors. It is used in home computers and in HPC. It offers 32
and 64 bits modes. The instruction set is stable and undergoes little evolution.

All Power ISA instructions are 32 bits long and must be word aligned. A
field in an instruction coding may be split over multiple location in the coding.

ARM

The ARM architecture [12, 9, 10, 11, 7] is a RISC architecture designed and
licensed by ARM Holdings and used by various processors. It is mainly used
in mobile systems but also involved in ongoing HPC projects.The architectures
undergoes frequent evolutions, with new versions released on a yearly basis.
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ARM processors support three instruction sets: ARM, which defines 32-bits
instructions, Thumb, which defines 16 or 32-bits instructions, and A64 (from
ARMv8 onwards), which defines 64-bits instructions.

Instructions from the ARM and A64 instruction set are always encoded on
a fixed length of 32 bits and aligned on a four bytes boundary. Most ARM
instructions are prefixed with a condition specifying whether the instruction
must actually be executed. When present, this condition is always encoded on
the five first bits. The binary template of the instructions depends on their
family: branch, data processing, load/store...

Instructions from the Thumb instruction set are encoded either on 32 or 16
bits and aligned on a two bytes boundary. The first five bits of an instruction
allow to identify its size. Branch instructions exist in the 16 and 32 bits version.
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Chapter 3

Disassembly

The process of disassembly consists in the parsing of a binary file in order to
retrieve the assembly instructions it contains. It can also be useful to retrieve
other informations stored in the file in order to facilitate further analysis of
the code, such as for instance function labels to have a first insight of function
boundaries. In our context, disassembling a binary file requires to be able to
perform the following three operations:

1. Parse the file to extract the relevant sections, especially the code it con-
tains

2. Parse the binary code of an instruction and return the corresponding as-
sembly instruction

3. Parse a succession of instructions from a binary stream

Step 1. is done through a parser of the binary format into which the file is
defined. We will not focus on this part, as the implementation of such a parser is
straightforward provided the specification of the relevant format is known (Cf.
2.1.7 for an overview of most binary formats).

Step 2. requires the implementation of a parser for the architecture for
which the binary code is defined. In our context, the main concern for this
stage is being able to easily update the parser as the architecture evolves and to
minimise the work needed for the implementation of a new architecture. Those
issues are addressed in [58] and will not be covered here.

Step 3. is the successful application of the binary parser to the binary
streams extracted from the file, and the use of additional informations found
in the file. This task can be complicated if the sections containing binary code
also contain data not representing instructions, which is possible even though
binary formats separate code sections from data sections.

In this chapter, we present the challenges of disassembly and our solutions.
We will focus first on the challenges from the application of a parser on a binary
stream (section 3.1), then describe common algorithms used to solve this as
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well as present existing disassemblers (section 3.2). We will then present our
solutions for addressing those issues and their implementations (sections 3.3 and
3.4), and their possible evolutions (section 3.5).

3.1 Challenges of disassembly

As noted in 2.2.1, the encoding of binary instructions does not include a sep-
arating character between instructions. Therefore, for architectures accepting
instructions of different lengths, the only sure way to reach the beginning of
an instruction is to successfully disassemble the previous one. If the parser
used for recognising individual instructions fails to correctly parse an instruc-
tion, it may not successfully identify its end, and thus attempt to disassemble
the next instruction while still in the middle of the encoding of an instruction.
Such an operation would lead the disassembler to return at least two erroneous
instructions or disassembly errors.

This problem can also occur if the parser functions correctly, but instead
encounters binary data not representing assembly instructions mixed with the
regular binary code. Although formats for binary files define separate sections
for code and other data, there is nothing to prevent a binary file to mix data and
binary code. In fact, since the only constraint for the execution of a program
is that the control flow is not interrupted and the executed code is loaded in
memory space open for execution, it is possible for the executable code to be
spread all over the file. In that case, branch instructions will be responsible for
keeping the control flow from reaching areas not containing executable code.

Since disassemblers operate statically, possibly with no information on the
instruction set other than their binary coding, they may miss those branches
and end up attempting to disassemble binary code that does not actually con-
tains instructions. This can lead to the disassembler returning parsing errors
when attempting to process those areas, or incorrectly disassembling correct
instructions that followed such an area. Conversely, since such code can po-
tentially take any binary value, the disassembler could be able to successfully
parse such a code into an instruction. It would then return instructions that
are not actually part of the executable code and may lead to further analysis
of the executable being incorrect because of those erroneous instructions being
taken into account.

Such disassembly errors may not be detected easily as some binary formats,
especially Intel x86, exhibit properties allowing disassembly to be self-repairing,
as demonstrated in [50] and illustrated in [46]. This means that, if the parser
failed to correctly identify the beginning of an instruction due to one of the cases
described above, it will eventually resynchronise with the proper boundaries of
instructions and return subsequent instructions correctly, provided it is still in
an area containing executable code. It is therefore possible for the disassembler
to return little to no parsing errors while attempting to disassemble binary code
containing instructions mixed with other data, making automated detection of
such areas complex.
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Figure 3.1: Example of a disassembly being thrown off course and returning
erroneous instructions.

Figure 3.1 presents how a disassembler can return wrong instructions when
attempting to disassemble binary data that does not represent an instruction.
The self-repairing properties can also be observed on this example, as the dis-
assembler is correctly realigned at the end of the second erroneous instruction.

3.1.1 Common challenges

A common occurrence of binary code representing instructions being mixed with
code representing other information is when data is mixed with code. A code
could for instance contain the value of variables close to the instructions using
them.

The most common occurrence for this is the use of jump tables, which contain
the different possible values for the destination address of an indirect branch
(see 2.2.2 and [35]). Such a table allows to avoid multiple conditional branch
instructions since only a calculation of the cell in the array is needed to identify
the target. This mechanism can for instance be a straightforward compilation
of a switch statement. Some compilers, like the Intel C compiler icc, use a
table mixed with code in customised version of standard functions that are then
added to the executables it compiles.

Another case where executable code is mixed with other information is when
padding is used. This can occur when a given instruction needs to be present
at a given address, most likely to satisfy alignment constraints. In that case, a
compiler will add binary code before the instruction to ensure such a constraint
is satisfied. This code will usually be legitimate instructions (a nop instruction
or similar), but can potentially be any other binary code if those alignment
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instructions are not supposed to be executed (like the example in figure 3.1),
for instance if the instruction to be aligned is the beginning of a function and
the padding is added after the return instruction from the previous function.

3.1.2 Obfuscated code

Some binary code may have been purposefully altered so as make its disassem-
bly harder, for code protection purposes. The code is then said to have been
obfuscated. [46] references some known methods of code obfuscation. Code
obfuscation code can also refers to methods aimed at making the assembly code
itself be more complicated, but we will not cover this here.

A common obfuscation method will be the addition of “junk” bytes to the
code, reproducing the case of data mixed with executable code. A refinement
of the method will be choosing those bytes so that disassemblers are able to
disassemble them into legitimate instructions, while losing the synchronisation
with the regular instruction boundaries, thus returning an incorrect sequence of
instructions.

Another obfuscation method is the use of self rewriting code. Such a code
will overwrite itself, moving binary data corresponding to the encoding of the
actual instructions to execute over to other parts of the binary code. A self
rewriting code will not prevent disassembly, but the disassembled instructions
differ from those that will be actually executed, and only a thorough analysis
of the disassembled code may allow to identify the actual instructions. Such
an analysis may not even be possible without a full simulation of the code, for
instance if a code is modified at each iteration of a loop. Self rewriting code may
also appear in non obfuscated code to reduce its size while effectively storing
multiple versions of the code in a single file. Figure 3.2 presents an example of
self rewriting code.

Figure 3.2: Example of self rewriting code

Another method that may also be used in non obfuscated code consists in
using overlapping instructions. This method is especially relevant with instruc-
tions sets of variable length, like in Intel x86. If two instructions happen to share
part of their coding, it would be possible to encode both of them at once, and se-
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lect which one must be executed through branches pointing to the relevant part
in the coding. The most common use of this is for instructions using prefixes to
change their operands or even distinguish between different mnemonics. Such
an instruction would be encoded with its prefix, but branches pointing after the
prefix would result in the other instruction to be executed. This method is close
to self rewriting code in its effects, in that the code will be successfully disas-
sembled but will not match the code actually executed. Figure 3.3 presents an
example of this technique to execute a different instruction in the first iteration
of a loop than for the following iterations.

Figure 3.3: Branch to the middle of an instruction

Other obfuscation methods would consist in mixing executable code inside
the structure of the binary file, for instance using reserved and unused bytes
in headers to store it, or obfuscating the binary format itself so that sections
in the file are harder to identify, while leaving the necessary informations for
running the executable. [49] details some of those methods. They don’t affect
the disassembly itself but make the retrieval of the binary executable code in
the file more complex.

3.2 Existing work

We will describe here the main methods for disassembling files, then present
some existing disassemblers.

3.2.1 Disassembly methods

There are two main methods for disassembling a file, described in [55] and [45],
linear sweep and recursive traversal, both with weaknesses before certain types
of codes. Disassemblers aiming at an extensive coverage of disassembled codes
and resisting obfuscation techniques usually implement a combination of these
methods. Both of them present a weakness to self rewriting code (cf. 3.1.2),
as an extensive analysis of the disassembled code is necessary in this case to
correctly identify the code to be actually executed.

Linear sweep

Linear sweep disassembly consists in a sequential parsing of the binary code,
considering that the coding of the next instruction to disassemble begins after
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Figure 3.4: Example of a linear sweep disassembly

the end of the previously disassembled instruction. Such a method ensures that
all the binary code that could be extracted from the file will have been parsed,
but will be hampered by most of the challenges described in 3.1.

For instance, data mixed with code will throw a linear disassembler off course
and generate parsing errors or cause it to report erroneous instructions. This
method is also vulnerable to most obfuscation techniques, especially those in-
volving the insertion of “junk” bytes.

Recursive traversal

Recursive traversal disassembly consists in the parsing of the binary code fol-
lowing the control flow. A disassembler using this method will perform a linear
sweep of the code until a branch instruction is encountered, at which point it
will attempt to resume its parsing starting from the destination address of the
branch. Such a method allows to overcome the problems presented by data
mixed with code representing instructions, but relies upon the successful iden-
tification of the targets of instruction branches. This is especially challenging
in the case of indirect branches (cf. 2.2.2), whose target is not immediately
deducible from reading the assembly code, and requires an analysis of the pre-
ceding instructions to be identified.

This method can also be more slower and complex to implement than a linear
sweep, for instance to handle conditional branches, where the control flow can
reach two different addresses. Some obfuscation techniques specifically target
this weakness by using fake conditional branches, where only one destination is
actually used in order to cause disassembly errors. They can also change the
return address of a call instruction; such an instruction is used to invoke a
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Figure 3.5: Example of a recursive traversal disassembly

function and it is normally assumed that the execution will be resumed at the
instruction following it when returning from the function.

3.2.2 Existing disassemblers

Disassemblers are commonly used either as standalone tools to print the disas-
sembled contents of a file, or as part of a more complex application to retrieve
the assembly code contained in a binary file before further analysis.

Disassemblers using linear sweep

objdump objdump [26] is a standalone disassembler included in most Linux
distributions, handling the architectures supported by this operating system
depending on its build. It allows to disassemble executable, relocatable or shared
ELF files (cf. 2.1.7) or a.out files (cf. 2.1.7) and print the assembly code
they contain. objdump uses an ELF parser to retrieve the location of the
executable code inside the file and the labels, so as to print them with the code
at the address with which they are associated. It is also able to retrieve debug
informations in the file.

As a plain linear disassembler, objdump does not feature a mechanism for
detecting data mixed with code and simply flags any parsing errors.

Others standalone disassemblers ndisasm [25], udis86 [57] and distorm
[36] are disassemblers for the x86 architecture. They don’t include a parser for
the binary file containing the code to disassemble and must be fed with the
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appropriate boundaries. udis86 and distorm offer to access the disassembled
instructions through an API in addition to printing them.

Debuggers Debuggers usually implement a disassembly feature allowing ad-
vanced users to view the assembly code being executed.

The GNU debugger gdb [16], offers to disassemble any range of addresses
from the executable being debugged. The disassembler may report erroneous
instructions if the given starting address is not located at the beginning of
an instruction. It is also possible to disassemble whole functions provided the
debugging informations are present for them.

Disassemblers using other methods

The following disassemblers use an improved algorithm over linear disassembly,
usually recursive traversal, occasionally complemented with linear sweep, in
order to extend their coverage.

PEBIL PEBIL (PMaCs Efficient Binary Instrumentation Toolkit for Linux)
[44] is a tool used to instrument ELF executables compiled for the x86 ar-
chitecture. Its first task when instrumenting an executable is attempting to
disassemble it, flagging functions whose disassembly failed as ineligible for in-
strumentation.

PEBIL uses the file’s symbol table to identify functions in the file, then
processes each of them using a control-driven (recursive) disassembly. If this
disassembly fails, PEBIL falls back to standard linear disassembly, flagging the
function as incompletely disassembled if this disassembly also fails. A disas-
sembly failure can be due to an unrecognised opcode or to the discovery of a
branch instruction pointing in the middle of an already disassembled instruction
or outside the current function while not being a call instruction.

This last behaviour can lead to discard valid functions, as some compilers,
like the Intel compiler icc, may add functions invoking one another using such
branches. This happens especially when compiling files for use with OpenMP.

PLTO PLTO [56] is a tool allowing to instrument and optimise executable
files for the x86 architecture without recompilation. PLTO uses a linear sweep
algorithm to disassemble a file. It then correlates the results with a check on
the target addresses of branch instructions. If a branch or relocation is found
to point to the middle of an already disassembled instruction, that instruction
is marked as invalid, and the disassembly is resumed from the target.

This behaviour may cause an instruction to be incorrectly flagged as invalid
for codes where instructions with overlapping coding are used as described in
3.1.2.

PLTO also attempts to analyse jump tables to identify the destination of
indirect branches.
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UBQT UBQT (University of Queensland Binary Translation) [34] is a binary
translation tool allowing to convert a binary executable from one architecture
to another. The first step of the translation processes is the disassembly of the
binary into an internal representation. The decoding module uses a recursive
traversal algorithm. It sequentially disassembles instructions until a flow branch
is met, at which point it resumes disassembly from one of the possible next
addresses for the continuation of the flow, storing the other possible addresses
in a queue for processing. The addresses of indirect branches are recovered with
an pattern recognition algorithm to identify the location of jump tables.

An additional algorithm disassembles the parts in the code that have not
been disassembled because they were not reached by any branch, discarding
those areas that are found to contain illegal instructions. The boundaries of
all disassembled areas are also checked against instructions performing register
updates to see if they appear as operands, in order to resolve simple indirect
branches.

3.3 Solutions for disassembling

Our solution relies on MINJAG [58] to generate the architecture specific code
used for parsing instructions. A standard parser for the binary file format is used
to extract the binary code to disassemble and the labels. The debug informations
are retrieved as well if they are present using the appropriate parser for their
format. Each section potentially containing code is then parsed and structures
representing the assembly instructions are built.

Since the MADRAS disassembler is chiefly intended to be used by other tools
for further analysis or before an operation by the MADRAS patcher, the main
concern was ensuring good performances. Therefore, a linear sweep algorithm
was chosen to perform the disassembly. Instructions are parsed sequentially; if
a parsing error is detected, the instruction is flagged as bad and the parsing
resumes at the next byte.

Labels retrieved from the binary file are stored in separate structures and
linked to the instructions found at the address to which they are associated.
The disassembler attempts to identify the instructions targeted by direct branch
instructions and stores them in the representation of the instructions.

The detailed algorithm of the MADRAS disassembler is described in Annex
B.

3.3.1 Sanity checks

A certain number of sanity checks and metrics have been added to the disas-
sembly process in order to detect potential parsing errors and fix the simplest
ones.

Some labels can be identified in binary files as marking the beginning of a
function. If the address associated to such a label is found to be in the middle
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of a disassembled instruction, this instruction is considered as erroneous. It is
then marked as bad, and the parsing is resumed at the address of the label.

The disassembler also offers a simple metric for detecting potential areas of
data mixed with code. A counter is increased for each consecutive error returned
by the parser and decreased after an instruction is successfully parsed. This
allows to detect instructions correctly parsed but mixed with disassembly errors,
which could therefore correspond to data bytes that matched with the coding of
regular instructions. This would allow to establish heuristics for discarding some
of these instructions, possibly requesting another pass of the disassembler for
some instructions to recover actual code that was badly disassembled because
of its proximity to the boundaries of the data section.

The disassembler offers another information about the flow. When scanning
the disassembled instructions for associating direct branches to the instructions
they branch to, unconditional branches or return from subroutine instructions
are detected. All instructions following such an instruction are then flagged until
the first instruction identified as the destination of a direct branch is met. This
will in effect flag all instructions that can’t be reached from a direct branch.
It will help to allow identifying instructions that are potentially disassembly
errors, instructions that are the target of an indirect branch, or dead code used
for instance for padding added after the end of a function.

3.3.2 Limitations

The MADRAS disassembler does not handle macro instructions and will always
return the corresponding instructions instead of the macro mnemonic standing
for them.

3.4 Applications

The MADRAS disassembler is functional and currently supports the x86-64 and
k1om instruction sets, for the binary files using the ELF format with the optional
DWARF debug informations. It is available as a standalone disassembler and
fully integrated into the MAQAO framework [31]. MAQAO is a static analysis
tool allowing to analyse binaries and build their control flow and data depen-
dency graphs. It relies on the MADRAS disassembler to decode the assembly
instructions contained in the binary and provide their representation. The static
analysis plug-in for MAQAO uses additional informations added by MADRAS
after parsing of the instructions to build estimates of the cycles needed for the
execution of loops or functions.

The MADRAS disassembler is also the entry point for the MADRAS patcher,
which is also used by the MAQAO framework to instrument files.
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3.4.1 Performances

The MADRAS disassembler was tested for coverage on binary files containing
extensive combinations of instructions for the supported architectures, using the
assembly sources of the files as reference. The disassembly errors amounted to
less than 0.2% for the x86-64 architecture and less than 0.01% for the k1om
architecture. Most of the errors for x86-64 are due to composite instructions,
which MADRAS can’t handle (see 3.3.2).

The speed of the MADRAS disassembler was compared against objdump,
whose architecture specific code is hard coded instead of being generated. In
its standard mode of operations, MADRAS disassembly speed is on average
40% slower than objdump, but in this mode the disassembler builds internal
structures representing instructions before printing them. In a special mode of
operations where instructions are printed as they are found in the file and no
structure is allocated, MADRAS is only 10% to 20% slower than objdump.

Printing whole disassembled files being not the main purpose of MADRAS
in the context of MAQAO, the speed of disassembly and allocations of struc-
tures alone was also measured. In that case, the disassembler was found to
process between 1.2 and 2.8 Megabytes of binary code per second. The lowest
performances are obtained with large files (more than 100 Mb) containing an im-
portant number of additional data like labels or debug informations which add
a significant overhead to the disassembly process. In that case, the comparison
with objdump is irrelevant as not no print operation takes place.

Figure 3.6: Performances of the MADRAS disassembler. In madras print only,
the instructions are printed directly without allocating structures, while for
madras no print, the structures are generated and destroyed but nothing is
printed. Finally, in madras, the structures are generated, printed and freed.

3.5 Future works

The MADRAS disassembler is mainly used as the entry point of other tools
for further processing, which may be time consuming in itself. It is therefore
important for the disassembler to offer the best possible performances to avoid
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being a bottleneck in the processing as a whole. One of the main goals of the
works on the disassembler is the continuing increase of performances. This must
not however be done at the expense of the agnostic approach to the architecture
allowed by generating the code with MINJAG. Conversely, the implementation
of the other evolutions presented here must not be at the expense of a loss of
performances.

Since MADRAS was designed to support multiple architectures, it will be in-
teresting to add support of more of them. While most of the architecture specific
code will be handled by MINJAG, this may lead to some updates in MADRAS
to handle some specific mechanisms of some architectures, for instance the way
instructions are bundled in IA64.

In the same order of idea, the support of other binary file formats, like
Mach-O or PE, could allow the MADRAS disassembler to process files from
other systems as Linux.

Another upcoming work will be fixing the current limitation on MADRAS
concerning the handling of macro and composed instructions. This will re-
quire updates in the parser and possibly in MINJAG as well, as the parser
and disassembler currently operate on a per-instruction basis. Handling those
instructions will require an additional processing at a higher level.

Since the MADRAS disassembler aims at providing most of the available in-
formations from the binary file, another interesting lead would be the retrieval
of informations from the data sections, especially in the identification of indi-
vidual variables. The bytes in the data sections of the code are not separated
depending on the variable which they represent and there is no easy way to
identify them from their values, for instance with a parsing similar to the pro-
cess used for disassembly. It is however possible to use some of the informations
present in the file to extrapolate the location of some of the variables in the
data sections.

First, compilers may add labels in the binary file associated to addresses
located in the data section. This may be a strong hint that these addresses
corresponds to the first byte of the data contained in a variable. Second, if
multiple instructions are found to reference a given address in the data section,
it is likely that this address also corresponds to the first byte of a variable. This
last information is less reliable, as accessed addresses could actually represent
various cells in a single array, and a heuristic would need to be defined to refine
this analysis, possibly combining it with the results from the first method using
labels.

These analyses could also be useful in identifying areas of data embedded
with the code.

Finally, in order to ensure a better accuracy on the disassembled code and
detect more of the cases of code embedded with data, some elements of recursive
disassembly could be added, while avoiding to add too much of an overhead.
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Chapter 4

Binary Rewriting

Patching a file consists in the modification of an already compiled executable
without recompiling it. Since it amounts to modifying the binary code of the
file it can also be identified as binary rewriting.

The most common patching operations are the insertion of a call to a function
or of a snippet of assembly code allowing to retrieve informations at run time
in order to perform timing or data profiling. Other operations would aim at
modifying instructions in the file to check their effect on the overall performance
of the application.

A possible way to perform binary rewriting would be to analyse the file
in order to rebuild the intermediary representation used by the compiler from
the binary code, then modify it to apply the needed patching operation and
reassemble it. However, decompilation is a complex problem that may not
always have a reliable solution, and, since the purpose of patching is usually
to retrieve informations about the behaviour of the compiled file, this intrusive
mode of patching could extensively change the structure of the generated code,
like source patching would, and invalidate the result of patching.

We will focus here on patching methods involving a direct rewriting of the
file. The main challenge comes from the fact that, unlike object files, executables
are not meant to be modified, and some can even contain specific countermea-
sures to prevent this. For instance, an executable may contain multiple fixed
references that could prove complex to identify for updating.

The patching of a binary file involves the following steps:

1. Retrieving the code present in the file

2. Alter the assembly code as needed by the patching operation

3. Rebuild the file as a valid executable

Step 1. was covered in chapter 3. We will focus here on the challenges and
solutions to steps 2. and 3.

The term “patch” will be used here for any operation modifying a binary
executable, while “instrumentation” is reserved for the specific modifications
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aiming at retrieving informations from the executable at runtime, like data
profiling, memory tracing, or timing. Thus, instrumenting a code is done by
patching it, but not all patching operations aim at instrumenting a file.

We will first explore the challenges of patching (section 4.1), then common
solutions and some existing implementations (section 4.2). We will then present
our choices and their implementations (sections 4.3 and 4.4), and then their
future evolutions (section 4.5).

4.1 Challenges of binary rewriting

Unless the patching requires specific needs, a patched file must have the same
behaviour as the original. For instance, its output is usually expected to be the
same for a given input. Most importantly, the patched program must not crash
when run with standard parameters.

This means the control flow and the data flow must be kept intact, or as
close as possible to the original, and that the patching operation must not cause
the appearance of forbidden or undefined operations.

A prerequisite for correct patching is the successful disassembly of the file,
or at least the part concerned with patching. We are assuming here that the
file was correctly disassembled.

4.1.1 Control flow

When running an executable file, the processor uses the instruction pointer to
identify the address of the instruction to execute. The binary code present at
this address is decoded, then the instruction pointer is updated to contain the
address corresponding to the end of the decoded instruction. If the instruction is
a branch instruction, its execution will update the instruction pointer to contain
the address pointed to by the branch.

If the instruction pointer happens to contain an invalid address, the program
execution will fail. If the address is located outside the segment allocated to
the program for execution, this will cause a segmentation fault. If the address
does not contain binary code that can be decoded into a valid instruction, an
unknown opcode exception will be thrown by the processor; this will happen for
instance if the instruction pointer references an address inside a valid instruction.
If the code pointed to by the pointer still happens to be successfully decoded
into an instruction, the processor will have lost synchronisation with the actual
code and may eventually encounter a binary code that can’t be successfully
decoded.

If the instruction pointer contains a valid address, but the code at this ad-
dress is not meant to be executed at this point, the program’s behaviour will dif-
fer from the original, ranging from returning incorrect results to a segmentation
fault, for instance if the code attempts to access a memory address contained
in a register that happens to be set to a null value. This case can also happen

27



if the instruction pointer was incorrectly set to contain an address set in the
middle of an instruction but still could disassemble it as a valid instruction.

It is thus necessary to ensure that branches in a patched file still point to
valid instructions, and that those instructions are coherent in regard of the
original control flow of the program. This concerns direct as well as indirect
branches (see section 2.2.2 for the description of those branches). For this it is
necessary to be able to identify the destination of those branches.

While the destination of a direct branch can be easily identified statically,
it is not always possible for indirect branches, and those may require advanced
analysis to identify their destinations. In particular, while direct branches have
one possible destination, indirect branches are mainly used when the destination
can vary depending on runtime data. It may be therefore necessary to identify
all possible values that the branch operand could take to be able to update
them.

In some cases, the value stored in the operand used by an indirect branch
can be the result of a series of calculations, some of them possibly conditional.
Identifying those values may be complex statically, since the number of possible
paths can increase exponentially when attempting to trace the origin of a value.

Indirect branches can also use a switch table, where the branch operand
references a cell in an array containing the address to branch to. This array
is usually stored in the data section, and as such its boundaries can be hard
to identify. For instance, the cell can be identified by a complex calculation,
making even the base of the array hard to identify. The array can also be
contiguous to other such arrays, making the analysis of its contents inconclusive
in order to identify its boundaries.

Finally, addresses can appear as immediate values in assembly code. This
is the case for instance when passing an address of a function as parameter to
another function. It is impossible to differentiate such an address from another
immediate without some heuristics.

If the patching changes the size of code, which is the case most of the time
if probes need to be inserted, the addresses will have to be updated. For the
reasons stated above, it may not be not possible to successfully identify all of
them. In the case of indirect branches whose target is the result of a non-trivial
calculation, updating them may also be complex and lead to further modification
of the code.

The behaviour of the executable also depends on its data accesses and so
the patcher must keep their coherence.

Some architectures allow to reference memory locations based on the address
of the instruction referencing them. Those instructions must be updated if the
instruction is moved or if the offset to the memory location changes. This is
the case if code is added or removed between the instruction and the memory
address it references.
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4.1.2 Saving the context

The execution of a program also depends on the runtime environment: values
stored in registers, on the stack, or in other memory locations. When a patching
operations adds code to a file, this code is liable to change this environment.
Since this code may not be known during the patching operation, for instance
if it is located in a dynamic library, it is not possible to identify which elements
of the environment it will impact.

Registers are used to store values used by instructions. The conventions of
the relevant architecture binary interface specify which of those registers (also
called scratch registers) must be saved before invoking a function. It is assumed
those registers can be used by a function without saving, as the compiler added
the instructions for saving them before invoking the function. However, when
patching a code, a function call may be inserted anywhere, making the addition
of the instructions for saving those registers necessary during the patching op-
eration. In some cases, the process of invoking an external function may also
overwrite some registers. Finally, it has been observed that, for executables
built from a single file, the compiler may not have obeyed the architecture con-
ventions regarding the passing of parameters when invoking internal functions,
for optimisation purposes.

The stack is an area of memory used for storing local data and passing
parameters to invoked functions, depending on the architecture and the level
of compilation optimisation. Its top level is usually identified by the stack
pointer, but the code of a function may actually access any location inside the
stack regardless of the position of the stack pointer. A detailed analysis of the
code is necessary to identify the parts of the stack that are used, otherwise the
code added by a patching operation may modify the values on the stack. [47]
references the problems linked with the saving of the stack.

For instance, an inserted function call will modify the stack, first when saving
the calling context, then possibly when passing parameters to the function, and
finally by the called function itself. If the code where the function call was
inserted was using data stored on the stack, the inserted code may overwrite
data used by the executable and cause errors.

It is therefore necessary to save data stored in registers and flag registers
before inserting code. If the patched code uses the stack, it must then be moved
before the inserted code is executed. This will usually be done by adding assem-
bly instructions before the inserted code performing the operations necessary for
saving all other informations and after those restoring them after the execution
of the inserted code.

Some architectures may also assume that the stack pointer is aligned at the
beginning of a function. If a function call is inserted in the middle of a func-
tion, the stack pointer may not be aligned at this point, making an alignment
necessary to ensure the called function works properly.
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4.1.3 Inserting functions

For easier implementation, instrumentation or profiling is usually done by in-
serting calls to ad hoc functions that have been already developed and compiled
separately, the alternative being the insertion of the corresponding assembly
code, which could be complex depending on the instrumenting function.

If the format of the binary file to be patched allows it, those functions can
be referenced in a shared library, and the patcher must insert the required
instructions for invoking such a function. This usually implies the edition of the
relevant relocation table stored in the binary file, and adding the appropriate
architecture specific snippet of code.

In other cases, it may be necessary to add the whole body of the function to
the file. This can be the case for instance if the patched executable is supposed to
be standalone and not requiring any external libraries. In that case, the patcher
needs to ensure that all required functions are added to the file, including those
needed by the instrumentation function or its dependencies.

4.2 Existing work on patchers

We will first present here alternatives to binary rewriting for instrumenting files
as well as some methods commonly used, then other tools offering to patch or
instrument files.

4.2.1 Code displacement

One of the most widespread methods for addressing the problems tied to the
preservation of the control flow when patching a program is code displacement,
also called code relocation. It consists in branching the control flow to an added
area of code. Instructions in the original code are modified to add a branch
instruction. The branch points to this new area of code which contains the
displaced code and any modification requested by the patching operation. The
flow is then branched back to the original code.

An alternative is the use of system interrupts instead of branches to jump
to the displaced code. This presents the advantage that the interrupt operation
takes care of saving the context and transferring the control to the area of
relocated code. In the case of x86, it presents the additional interest of being
accomplished with a one byte instruction, the shortest length, thus ensuring
minimal alteration of the original code to insert it, since other branches are
always longer. The main drawback of this method is the important overhead
brought by the interrupt operation for saving the context and transferring the
controls.

This method can be applied either for binary rewriting or dynamic patching.
[43] describes this method, which was implemented for the qp and qpt in-

strumenters for the MIPS and SPARC processors.
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4.2.2 Compiler-based instrumentation

One method of performing instrumentation is through the compiler. The code
modifications are performed during the compilation process, so that the com-
piled executable contains all required alterations. This allows to benefit from the
compiler’s internal representation of the code to ensure that the modifications
will not damage the control flow of the generated executable, while preventing
the transformations performed by the compiler on the code to be impacted by
the modifications, which is the main drawback from source instrumentation.

This is the method used by the GNU profiler gprof [39, 17, 59] to add probes
during processing by the gcc compiler. Another use of this is described in [60],
where executables for the MIPS processor are instrumented using additional
information provided by the linker to create relocation tables allowing to update
all branches inside the code, while branches to data section are not updated as
the executable files contain a gap in addresses between the code and data where
the inserted code will be added, thus avoiding the need to move the data section.

The main drawback of this method is that it implies being able to modify
the code of the compiler used, which may not be possible if the compiler used
in the files to be analysed is not Open Source. It can also lead to an increased
implementation workload if multiple compilers must be supported, as each of
them would have to be patched accordingly. It also requires access to the ap-
plication sources in order to recompile it with the appropriate options, which is
not always possible. Finally, while such methods allows to relatively easily in-
strument files on a function or loop level, it may be more complicated to specify
fine grained modifications, such as at an instruction level.

4.2.3 Dynamic patching

Dynamic patching consists in the modification of a file during its execution,
either by using a supervising thread or by altering the executable after it is has
been loaded into memory.

Thread supervision

The use of a supervising thread, such as the one allowed under Linux by the
system call ptrace [40], allows to control the execution of another thread and
change its runtime data context. Debuggers are a common application of this
method. It can be used in order to perform instrumentation in a file while
avoiding problems tied to the preservation of the control flow and the data
environment, since all runtime variables can be accessed.

One drawback of this method is that the process of patching the file will
have to be repeated for every execution of the application, adding its overhead
to all of them. It also requires an additional thread to be executed, which
may not be possible or require additional configuration from the environment,
for instance in the case of an already multi-threaded code. Finally, the whole
code may not be accessible through this method, preventing some of the more
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detailed analysis of the executable before settling on the patching operations to
perform.

Patching in memory

Patching the representation of the file in memory allows to access the code after
it has been loaded and all operations like relocations have been performed. It
also allows to perform multiple patching operations during the execution of the
file, such as removing or disabling a given modification in a loop after a certain
number of iterations.

It suffers from the same drawback as the thread supervision method in that
the overhead of the patching process will be added to each execution of the file,
while presenting the same challenges as static binary rewriting.

4.2.4 Simulation

Another method is simulating the execution of the application, or dynamically
translating it in a process similar to Just In Time compilation while performing
the required modifications. The main interest of this method is that, since the
whole executable is reinterpreted, it allows to avoid all problems tied to the
conservation of the control flow or data context, as modifications brought by
the patch operations are integrated in the execution as if they had been present
at compilation without altering the overall structure of the program.

This is done however at the cost of an important overhead, since the trans-
lation process can be time consuming. It can also present issues when handling
multi-threaded applications, as it requires being able to emulate multiple threads
and their communications, which are handled at the system level.

4.2.5 Patching tools

We will present here some existing patching or instrumenting tools and the way
they address the challenges of binary rewriting.

DynInst

DynInst [33, 32] is a static and dynamic binary instrumenting tool. It allows
to insert instrumentation function calls at different points of the executable’s
Control Flow Graph (CFG).

Instrumentation is done through code displacement using a double trampo-
line. The original code is modified to replace one instruction with a branch to
an inserted area of memory containing the replaced instruction, and a branch
to a mini-trampoline. The mini-trampoline is another inserted area of code
containing instructions for saving and restoring the context, passing arguments
to the inserted function and invoking it.

This behaviour is used for static as well as dynamic patching.
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PEBIL

PEBIL [44] is a binary rewriting tool allowing to patch ELF files for the x86-
64 architecture. PEBIL allows to insert function calls and assembly snippets
in binaries for instrumentation purposes. PEBIL addresses the problems of
patching by performing code relocation at a function level. New code and
data segments are created to contain the added and modified code. When the
assembly code in a function needs to be patched, the whole function is moved
to the new code segment and its code is altered as needed by the patching
operation.

Functions that could not be properly disassembled are flagged as being in-
eligible for instrumentation, as well as functions too small to contain a branch
instruction, which can happen in x86-64. PEBIL also adds code around inser-
tions for saving the registers and move the stack to save the context.

PIN

PIN [41] is a tool performing runtime instrumentation through thread supervi-
sion, allowing to trace an executable during its execution and monitor various
parameters. It is available for Linux executables on x86 (both 32 and 64 bits),
Itanium, and XScale architectures, and for Windows and MacOS on x86 archi-
tectures.

The tool also allows to insert calls to functions during the execution of the
code, as well as modify the contents of memory during execution.

It is possible to insert probes in the code before execution, which redirect
the execution flow to another function in a process similar to code relocation.
A file so instrumented with PIN can be run under GDB. This mode does not
work on multi-threaded applications and does not check if the destinations of
branch instructions is valid.

Valgrind

Valgrind [51, 52] is an instrumentation platform for Linux executables under
x86, ARM, PowerPC and MIPS architectures. It is a framework for building
tools using its instrumenting abilities.

The core of Valgrind functions as a JIT compiler. It begins by disassembling
the executable code and converting it into an intermediate RISC-like assembly
language. Instrumentation is done on this intermediate representation, which
is then recompiled into the assembly language of the target architecture and
executed. The contents of the registers used by the architecture are stored in
memory.

System calls are handled by setting up the system state as if the original code
was still executing. Threads are handled by Valgrind, which executes them on
a single thread that periodically switches between the simulated threads.
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Other tools

PLTO PLTO [56] performs binary rewriting, and include optimisation as well
as instrumentation options. It is used for IA 32.

Elfsh/ERESI The Elfsh utility and libraries, later merged with ERESI [37]
(Reverse Engineering Software Interface), allows to disassemble, perform dy-
namic and static analysis, and patch ELF executables. It is available for x86 32
and 64 bits, and SPARC architectures.

Binary rewriting is done by inserting relocatable files into executables, and
redirecting function calls to point to the inserted functions.

Etch Etch [54] is a binary rewriting tool for Windows x86 executables. It was
released in 1997 and has undergone few evolutions since.

Etch allows to add, modify or remove parts of the code of an executable in
order to perform instrumentation or optimisation.

4.3 Solutions for binary rewriting

Our solution relies on code displacement, as described in 4.2.1, to address the
challenges tied to static patching. It will be used for all modifications that
would change the size of the code: insertion, deletion, or modification into an
instruction coded on less bytes than the original for architectures with variable
instruction length.

The main constraint of the code displacement method is being able to cor-
rectly detect and update all branches or memory references to and from the
displaced code. Since those are not always easily identifiable, the goal was to
reduce the size of the displaced code as much as possible. This could be achieved
by moving only a single instruction, and returning the flow to the instruction im-
mediately following it; however in architectures with variable instruction length,
a branch instruction could be larger than the instruction to be patched, mak-
ing this simple replacement not possible. The solution was therefore to allow
varying scopes of displaced codes depending on the patched location.

We rely on a binary editor to parse the binary file for the format of the file
being patched and rebuild the patched file. This is the same editor we use for
disassembling the file.

We also rely on an assembler whose architecture specific code was gener-
ated by MINJAG [58] to generate the binary coding of modified or inserted
instructions.

We will first detail here our implementation of code displacement, then the
various workarounds allowing to address the remaining problems, and the cur-
rent limitations. We will also address the issues tied to the saving of context.

The detailed algorithm of the MADRAS patcher is described in Annex B.
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4.3.1 Conventions

In most cases, a single patching modification will target a single address: it
will either consist in the insertion of a function call or code snippet at this
address, or the modification or deletion of the instruction at this address. The
only exception would be the deletion or replacement of a series of consecutive
instructions, but this can also be considered as a modification targeting the
address of the first instruction in the series. In the remainder of this chapter,
we will use the term “patched address” to identify such an address targeted by
a patching modification. Since the patcher always targets the code, we will also
use interchangeably the term “patched instruction” to identify the instruction
located at the patched address.

4.3.2 Code displacement

The implementation of code displacement consists in the following steps:

1. Identification of the code to displace.

2. Replacing the displaced code with a branch instruction in the original
code.

• If the branch is smaller than the displaced code, the remaining space
is filled with padding to ensure the address of the first instruction
following the displaced code is unchanged.

3. The displaced code is modified according to the requested patched oper-
ation.

• Any relative references to another part of the executable code or data
are also updated to reflect the change of addresses of the code

4. The new branch instruction is set to target the first instruction in the
modified displaced code.

5. A branch instruction is appended to the displaced code, targeting the first
instruction following the displaced code.

All displaced codes are appended to one another and grouped into a new
section. This section will be added to the patched file by the binary editor. The
editor will be responsible for affecting an area of virtual addresses to this section
that is outside of the original range of virtual addresses of the file. Figure 4.1
presents a schematic view of code displacement following this implementation.

The displaced code being in a new area, any modifications can be performed
on it without any impact on the remaining of the code.

The crucial step is the identification of the displaced code. As noted above,
it should be as limited as possible to avoid moving the destination or origin
of a branch instruction that could not be properly identified, while being large
enough to contain a branch instruction.
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Figure 4.1: Code displacement

We support three different scopes for identifying the code to displace, each
of them leading to a greater or equal area of displaced code than the previous
one. Depending on the options, the patcher will switch to the next scope if the
current does not return the necessary size, or stop and return a warning for the
given patch operation.

We also devised a workaround using trampolines if the size is not large
enough to contain the branch instruction.

Displacing single instructions

This is the safest mode considering the preservation of the flow, as moving only
the patched instruction ensures that all branches pointing to it, even those that
could not be detected, will point to the inserted branch instruction instead.

If the patched instruction is smaller than the branch instruction, the patcher
will attempt to add other instructions to the displaced code until either the
length of a branch instruction is reached or a branch instruction or destination
of another branch instruction is met. It will first attempt to add the instruc-
tions immediately following the patched instruction, then those immediately
preceding it.

Displacing basic blocks

In this mode, the basic block containing the patched instruction will be dis-
placed. Such a basic block is identified as follows:

• Begins either at:
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– the first instruction before the patched instruction that is the desti-
nation of a branch

– after the first branch instruction found before the patched instruction

• Ends either at:

– before the first instruction after the patched instruction that is the
destination of a branch

– the first branch instruction after the patched instruction

– the patched instruction if it is a branch instruction itself

• If the patched instruction is a branch, the block will also include all nop
instructions following it

This scope is the default mode, as it presents a good compromise between
limiting the size of displaced code and ensuring that it is large enough to contain
a branch instruction. Another advantage of this scope is that it reduces the
number of added branches if more than one modification has to happen in the
same basic block, as it will be moved only once.

It is however possible to encounter basic blocks with the definition above
that will be smaller than the smallest branch instruction. For instance, in x86,
the instruction returning from a function, ret, is coded on 1 byte, while the
smallest branch instruction uses 2 bytes. Compilers can generate code where a
branch instruction points to a ret instruction immediately followed by non nop

instructions, making it a 1 byte basic block.
The main drawback of this method is its reliance on the correct detection of

branch instructions destinations.

Displacing functions

The last scope moves whole functions. Functions are identified in a simplis-
tic manner as the instructions contained between the first label immediately
preceding the patched address up to but not including the label immediately
following it.

The main advantage of this scope is that it ensures that the displaced code
will have the required size in most cases, although it is still possible for a very
simple function to be still smaller than a branch instruction.

It presents the drawback of increasing the size of displaced code, and thus the
chances that some of the displaced instructions are targets of indirect branches
which could not be identified and will not be updated, thus potentially leading
to a break of control flow.

Trampolines

If the displaced code is smaller than the branch instruction, a workaround is
implemented if the architecture offers a smaller branch instruction for a smaller
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offset. This is the case in x86-64, where a two bytes long branch instruction is
defined (cf. 2.2.3).

If the displaced code is large enough to contain such a smaller branch in-
struction, this instruction will then used to displace the code using a trampoline.
In this method, the patcher will attempt to find an area of code meeting the
following criteria:

• It is eligible for being displaced given the current scope

• It can be reached from the patched address with a small branch instruction

• It is at least as large as two largest branch instructions.

This area can be an area of code that was already displaced for another patching
operation, if it was large enough to contain a large branch instruction in addition
to the one used to branch to the displaced code.

If such an area is found, it will be moved using the standard method for
code displacement. In the space left, a large branch instruction, designated as a
“trampoline branch”, is inserted. The area containing the patched instruction
will be moved normally to the section containing displaced code, and appended
with a branch instruction pointing to the instruction immediately following it,
as is the normal behaviour. The trampoline branch is set to point to this
displaced area. The space left by the area containing the patched instruction
is replaced by a smaller branch instruction pointing to the trampoline branch.
The principle is described in figure 4.2.

Figure 4.2: Principle of trampolines

While it would be possible to keep linking trampolines until an area suitable
to contain a large branch instruction is found, this behaviour is currently not
implemented, as it could lead to a “domino effect” where large portions end up
being displaced.

38



4.4 Applications

The MADRAS patcher is functional and currently supports the x86-64 and
k1om instruction sets, for the binary files using the ELF format. It is accessible
through a low-level API described in A.

4.4.1 Customisable behaviour

The MADRAS patcher is a low level tool, allowing for a fine granularity while
keeping its use relatively simple. Most of its behaviour can be controlled through
toggles either for a whole patching session or for separate patching operations.

Scope selection

It is possible to chose which kind of scope to use when defining the area of
displaced code around the patched instruction, and whether the patcher can
switch to a broader scope if the current one could not find an appropriate area.
Likewise, the use of trampolines can be disabled.

Branches updating

The MADRAS patcher also allows to selectively update the branches to patched
instructions when the patch aims at inserting code. The normal behaviour when
inserting code before the patched instruction is that all branch instructions
pointing to it are updated to point at the inserted code, thus ensuring that it
will always be executed before the patched instruction. It is possible to request
that only some branches will be updated that way while leaving the others to
point to the patched instruction. This can be useful for instance if the inserted
code aims at profiling the entry point of a loop or function, but should not be
executed when this point is accessed from inside the loop or function.

Forcing displacement

In the current version, the default behaviour if a displacement can not be done is
to skip it and print an error message. It is possible to to bypass this behaviour
and force the displacement anyway. This can be useful when all the blocks
adjacent to the one causing the error will also be displaced, thus solving the
lack of space problem. Usually however, forcing the displacement will lead the
patched file to crash or behave incorrectly.

Saving the context

When the patching operation consists in the insertion of a function call, the
MADRAS patcher automatically encloses the insertion with instructions for
saving the register and execution flags context and restoring it afterwards, as
well as aligning the stack. It is possible to prevent the patcher from adding
these instructions, allowing the application using MADRAS to fine tune the
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registers to save based on the knowledge of the inserted functions for better
performances.

Conditional executions

The MADRAS patcher also offers to set conditions on the execution of an in-
serted function or assembly code snippet. These conditions are compiled into
assembly instructions that are added to the inserted code and ensure it will be
executed only if the conditions are met. This allows for instance to execute an
inserted code only for some iterations of a loop, or for more complex uses insert
different codes to execute depending on the possible values of an operand used
by an indirect branch.

4.4.2 Limitations

The current version of the MADRAS patcher assumes that the added section
containing displaced code is reachable from the original code with a direct
branch instruction. In x86-64, such instructions encode their offsets on 32 bits,
allowing for an absolute offset of 2 Gigabytes. If the section containing dis-
placed code was added at an address more than 2 Gb apart from the original
code, this instruction will not be usable to branch to and from this section.
Such an offset may occur for instance if the displaced code was to be added
after the section containing uninitialised data, which can reach such a size for
some executables. In such a case, the patcher would need to use an indirect
branch or use a trampoline.

Another limitation is that the patcher does not update indirect branch in-
structions when they are moved. This is not a problem in the x86-64 or k1om ar-
chitecture, as in those all indirect branches contain absolute addresses, but needs
to be addressed when using MADRAS on architectures where these branches
can contain relative addresses.

4.4.3 Use in MAQAO

MADRAS is fully integrated into the MAQAO framework [31]. The patcher
allows MAQAO to complement its static analysis with instrumentation through
its instrumentation language MIL.

MIL offers a simplified interface for instrumenting files, inserting function
calls or assembly code at various points in the Control Flow Graph.

–TODO– Add the graphs from the MIL paper

4.4.4 Use by DECAN

DECAN [42] is a tool allowing to remove selected instructions accessing memory
from executables in order to identify their impact on the overall performances.
DECAN relies on the MADRAS API to generate the modified executables.
Among the transformations performed by DECAN are:
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• Removing some or all load and/or stores instructions from a given loop or
replacing them with nop instructions

• Replacing the memory address operands in instructions with a fixed mem-
ory address

• Replacing instructions storing a value into memory with instructions load-
ing a value from memory, and reciprocally.

DECAN also inserts assembly code for timing the transformed loops. It can
also perform these transformations on a single iteration of a given loop.

4.5 Future works

Since MADRAS was designed to support multiple architectures, one of the most
important upcoming evolutions of the patcher will be the support of more of
them. While the general behaviour of the patcher has been designed to not be
dependent on the architecture, the support of new architectures may require the
addition of further mechanisms to ensure an optimal coverage of the available
codes.

Another useful evolution would be the support of other binary formats, al-
lowing the MADRAS patcher to process files for the Windows or OSX operating
systems. This will require being able to successfully rewrite files for those for-
mats, including the handling of their loading instructions and the procedures to
invoke external functions.

Other evolutions are tied to the evolutions of the disassembler, especially
as far as the detection of jump tables are concerned. Being able to identify
more precisely the tables used by indirect branches would allow to update them
when the addresses they contain correspond to instructions moved by the patch
operations.

Another evolution includes getting rid of the limitation concerning the use
of large branches mentioned in 4.4.2 in order to handle files with large data or
even code sections.

Finally, since the MADRAS patcher is designed to be part of a tool chain
including disassembler and analysis modules, and is intended to be used on
complex or large files where disassembling or analysis could be time consuming,
accessing the best performances for the patching operations would prevent it
to become a bottleneck. Evolutions aiming at improving the patching speed of
MADRAS are therefore equally important.
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Chapter 5

Conclusion

We presented MADRAS, a tool allowing to disassemble and patch binary exe-
cutables and libraries. MADRAS is functional and supports ELF files for the
x86-64 and k1om architectures.

MADRAS is part of the MAQAO analysis framework and is an essential
part of its life cycle. The disassembler is the entry point of all static analyses,
while the patcher is used by the MIL and DECAN modules to perform all
instrumentations or other transformations.

The multi architectural nature of MADRAS, provided by MINJAG, ensures
that MAQAO can be easily adapted to support new architectures with minimal
implementation effort.

The MADRAS disassembler aims at offering a good compromise between
speed and precision, while providing helpful hints to the analysis tools using its
output.

The MADRAS patcher offers a low-level interface allowing a fine grained
control of its actions, while being able to handle most cases in its default be-
haviour.

As part of an evolving tool, MADRAS is due for more improvements, first
stemming from exploiting its ability to support multiple architectures. Other
updates will concern the MADRAS disassembler performances in speed and
precision, which could in turn affect the coverage of the patcher.
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Appendix A

MADRAS API

libmadras is an API allowing to access the functionalities of the MADRAS
disassembler and patcher.

The libmadras API allows to pilot the disassembly and patching of a binary
file, and some examination of its contents. Patching operations cover inserting
function calls or assembly instruction, delete or modify existing assembly in-
structions, and modify the list of libraries needed by a file.

libmadras is available on architectures supported by the patcher, disas-
sembler, and binary parser. In the current version, only the x86-64 and k1om
architectures under the ELF binary format are supported.

A.1 libmadras structures

The main structure used by libmadras is elfdis t. It is used to store a
disassembled file, the modification requests and logging settings. An elfdis t

structure is returned upon disassembling a new file. It must be freed using
madras terminate.

All subsequent libmadras functions need a pointer to the current elfdis t

structure. It is not advised to access directly the members of an elfdis t

structure.

A.2 Disassembling functions

The main function for disassembly is madras disass file. It needs a valid file
name and will return a pointer to a new elfdis t structure containing the disas-
sembled file. None of the structural analysis functions from the core components
of MAQAO are performed on the disassembled file. Only the information from
the disassembly are available.
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A.3 Retrieving informations about a disassem-
bled file

The API allows to define a cursor on instructions present in the disassembled
file. It is possible to move the cursor along the list of instructions and to retrieve
informations on the instruction the cursor currently points to.

This part of the API is subject to change or become obsolete in the following
releases of MADRAS and will not be detailed here.

A.4 Patching functions

The functions allows to patch a file and save the results to a binary file. This
operation is defined as a patching session by the MADRAS API. A patching
session contains the following steps:

1. Patcher initialisation: this operation sets the variables needed for the
patching operation

2. Patch requests: registering a series of patching requests. No patching is
actually performed at this stage.

3. Patch commit: this step must always be the last one in a session. It
performs all the patch requests and writes the result to another file.

In the current version, only one patching session can be performed on a
disassembled file. It is also not possible to produce multiple patched files from a
single disassembled file. It is advised to terminate the elfdis t structure after
a patching session has been completed. If other patching operations are needed,
a new structure must be created by disassembling the file once again.

Because patching operations are all performed during the commit, all po-
tential patching errors will be reported at this point only.

A.4.1 Patcher initialisation

Patcher initialisation must occur before applying any patch requests. It is per-
formed through the function madras modifs init.

This function also allows to choose the method used for saving the stack
when performing code insertions. This is important, since an inserted code
can use the stack for saving the context before performing a function call, and
such an inserted function can itself be using the stack. As insertions can be
performed anywhere in the code, there is no guarantee that the necessary steps
for preserving the stack before a call have been done, unlike what happens on a
compiled code, so the content of the stack can be corrupted by the insertions.
This can lead to errors in the patched file if the stack contained values used by
the original code and that have been changed by the inserted code. The patched
executable may even crash if pointers were present on the stack.

libmadras offers three different ways of dealing with the stack:
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• Keep: The stack pointer is not modified in any way. This mode is ad-
vised for insertions into codes where the stack is not used, or for patching
sessions which will not involve code insertions. It can lead to crashes if
used for insertion into codes where the stack is used.

• Move: The stack is moved to an area of memory that has been added
to the file. This ensures that the stack used by the inserted code does
not overlap with existing memory areas. However, it is not supported in
multi-threaded mode, as the same area will be used for all threads. It can
also lead to an overflow if the inserted functions make a heavy use of the
stack, as the size reserved for the moved stack is limited (currently to 1
Mb).

• Shift: The stack is shift upward by a number of bytes defined by the user.
This allows to skip the area used by the current stack while remaining
thread-safe. As there is currently no way to know the top size of the
current stack, this method may still lead to errors in the patched file if
the shift is not important enough. It has been observed that a shift of
512 bytes is enough for all tested codes. This mode is advised for most
patching sessions involving function call insertions.

A.4.2 Data modification

The MADRAS patcher allows to insert a new global variable to the file, using the
madras globalvar new function. The inserted global variable can be accessed
from any place of the executable; as its address is fixed, it is not protected
against multi-thread access.

An inserted global variable will be filled with zeroes by default. It is possible
to specify a value to initialise it. This is the standard behaviour when inserting
strings.

It is possible to use either the address or the value of global variables as
parameters to inserted functions (see A.4.4) or operands to inserted instructions
(see A.4.4).

A.4.3 Libraries modification

It is possible to modify the list of dynamic libraries needed by an executable.
The name of a needed library can be changed using the madras extlib rename

function. This can be useful for instance when a needed dynamic library has
been itself patched and saved under a different name.

The dynamic library where is defined a function whose call is inserted (see
A.4.4) is automatically added to the list of needed libraries. The function
madras extlib add also allows to do that but it is not needed for dynamic
libraries. This function is intended to be used to insert static libraries to a file.
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A.4.4 Code modification

The MADRAS patcher allows to insert calls to functions present in a file or
defined in a dynamic library, insert assembly code, and delete or modify in-
structions.

All modifications are performed in the order of ascending addresses. In
case of multiple modifications at the same address, the modifications will be
performed in the order into which their respective requests were made. It is
also possible to choose whether an insertion must be performed before or after
the instruction present at the given address.

The behaviour of the MADRAS patcher is undefined if an instruction is
requested to be deleted as well as modified. It is also not possible to modify an
instruction that is being added by the patcher.

All functions allowing to modify the code return a pointer to a modif t

structure. This pointer represents the modification request and allows to add
further options to it.

All modifications performing code insertions can be set at a null address.
Those modifications are intended to be used either when linked to another
insertion (see A.4.4) or as an “else” statement to an insertion with conditions
(see A.4.4). An error will be raised when committing modifications requests
if some modifications set at a null address are not found linked to another
modification.

Inserting a function call

It is possible to insert a call to a function either defined in a dynamic or static
library file or already present in the executable, using the madras fctcall new

function. If no library name is provided, the MADRAS patcher will assume the
function is present in the executable, and will display an error if not found there.
Otherwise, the MADRAS patcher will use the library name to identify its type
(static or dynamic) and chose the type of insertion to perform. If the library
where the function is defined is static, it is necessary to also add all libraries
defining the symbols used in the library using madras extlib add. The patcher
will return an error if some symbols remain undefined.

When inserting a function call, the MADRAS patcher will automatically
surround the inserted call with the appropriate assembly instructions for saving
and restoring all registers, as well as aligning the stack pointer and saving the
current stack depending on the chosen method (as described in A.4.1). The
madras fctcall new nowrap function allows to insert only the function call
without any such surrounding instructions. This function can be useful to reduce
the overhead of saving and restoring the context provided the user takes care
of it (using for instance madras insnlist add to save and restore only a subset
of registers) or if the inserted function can not change the execution context or
on the contrary if it is the expected behaviour. 1

1madras fctcall new nowrap is now deprecated, as the same result can be obtained using
madras fctcall new then madras modif addopt with the PATCHOPT FCTCALL NOWRAP flag.

50



Both functions return a pointer to a modif t structure, which contains all
the details on an insertion request. The pointer can be used to add parameters
and return value to the function call by invoking the madras fctcall add∗
functions.

An inserted function call can accept up to 6 parameters (additional param-
eters will be ignored). Parameters are added to an existing function insertion
via different API functions depending on the parameter type. Those functions
are:

• madras fctcall addparam fromstr, to add a valid assembly operand from
its string representation

• madras fctcall addparam frominsn, to add an operand from another
instruction

• madras fctcall addparam imm, to add an immediate operand (integer)

• madras fctcall addparam fromglobvar, to add a global variable added
by the MADRAS patcher

It is not possible to use an existing global variable as parameter.
In the current version, all parameters are passed as 64 bits integers, so an

inserted function can use either 64 bits integers or pointers as parameters.
An inserted function call can be set to return a value. This is done with

function madras fctcall addreturnval. The return value must be a global
variable added by the MADRAS patcher. Like the parameters, the return value
is a 64 bits integer, so it can be either treated as an integer or a pointer.

Inserting assembly instructions

It is possible to add assembly instructions either in string format using the func-
tion madras insnlist add or as a queue of the structures used by MAQAO to
represent an assembly instruction (insn t) using the function madras add insns.
The instructions will be added at the given address without any check nor ad-
dition of wrapping instructions.

Instructions present in inserted lists can reference a global variable added by
the MADRAS patcher. An instruction referencing such a variable must use a
memory operand using the instruction pointer as base and a null displacement
(0(%RIP)). An array of pointers to the globvar t structures describing the
referenced global variables must be passed as parameter to the function, with
the pointers appearing in the same order in the array as they appear in the
instruction list. It is possible for a pointer to appear more than once if the
corresponding global variable is to be referenced multiple times.

Instructions added using madras insnlist add must be passed as strings,
all written in upper case, and separated by carriage return “\n” characters.
Such lists can use labels, identified as followed by a colon character “:” and
beginning a line, to reference branch destinations. It is not possible to reference
a label from the patched file in an inserted list.
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Inserting a branch instruction

It is possible to insert an unconditional branch instruction using the function
madras branch insert. The branches added using this function can point ei-
ther to an existing instruction in the file, referenced by its address, or another
modification request (only insertions modification requests are currently sup-
ported). In the latter case, the branch will point to the first instruction inserted
by the modification.

It is also possible to choose whether the branch must be updated if a code
insertion is performed before its destination. The standard behaviour would be
to update the branch to point to the beginning of the inserted code, but an
option allows to override this behaviour to ensure the branch always points to
the same instruction.

Modifying an instruction

It is possible to modify an instruction at a given address using the function
madras modify insn. This function allows to change the opcode and/or some
or all operands of the instruction; it is also possible to remove or add operands.
Opcodes and operands must be provided as strings identical to their assembly
representation, written in capital case.

A flag allows to choose the behaviour of the patcher when the modified
instruction has a smaller coding than the original. In such a case, the MADRAS
patcher can pad the remaining space with nop instructions, which allows to
avoid moving the area containing the modified instruction as is the standard
behaviour. Otherwise, the modified instruction will be displaced as it would if
larger than the original.

There is no test on the validity of the requested modifications when perform-
ing the request. If the modified instruction is invalid, an assembly error will be
returned when committing the changes.

Deleting instructions

It is possible to delete one or more instructions in the file using the function
madras delete insns. The instructions will be removed from the patched file.
All direct branch targets pointing to a deleted instruction will be updated to
point to the first non deleted next instruction.

The function madras replace insns allows to delete one or more instruc-
tions and replace them with nop instructions to preserve the size of the pro-
gram, thus eliminating the need to perform code displacement. Direct branch
instructions pointing to any replaced instruction are updated to point to the
first instruction of the replacement block instead.

Linking modification requests

It is possible to link modification requests from one to another. This is only
supported for modifications representing a insertion request (for code, function
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call, branches...). Linking a modification M’ to modification M will ensure that
the code of M’ is executed after the one of M.

• If the linked modification M’ has an non null address, an unconditional
branch will be added after the last instruction inserted by M, branching
to the first instruction inserted by M’.

• If the linked modification M’ has a null address, the code that it should
insert will be directly appended to the code inserted by M.

Adding conditions on modification requests

It is possible to add conditions for the execution of the code generated by the
modification request when running the patched file. This is currently supported
only for modifications representing a insertion request (for code, function call,
branches...).

A condition object must first be created using madras cond new. A condition
can be formed with either:

• A numerical value, an assembly operand represented as an oprnd t struc-
ture used in MAQAO to represent operands, and a comparison operator
(<, =, ≤...)

• Two other conditions and a logical operator (AND or OR).

It is thus possible to build a complex condition using multiple comparison
of operands and values. The current version does not support a comparison
between two random assembly operands.

A condition object can be attached to an existing modification using the
function madras modif addcond. If another condition was already attached to
this modification, the final condition attached to the modification will be formed
by both conditions and the specified logical operand (AND by default).

It is also possible to add a condition to a modification from its string repre-
sentation, using madras modif setcond fromstr. The string representation of
a condition must obey a syntax close to the one used in C:

• All conditions are enclosed by brackets (“(” and “)”)

• A condition is formed by either of

– two conditions separated by a logical operator (“&&” or “||”)

– an assembly operand and a value separated by a comparison operator
(“==”, “!=”, “<”, “>”, “<=”, “>=”)

• Assembly operands used in conditions must be enclosed by quotes (”)

A modification to which a condition was added can also get an else state-
ment, using madras modif addelse. An else statement is a modification (only
insertions are supported) set at a null address (an error will be raised if it is
not). The code inserted by this modification will be executed if the condition is
not met.
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A.4.5 Patcher options

The madras modifs addopt function allows to tweak the behaviour of the patcher
for a whole patching session. The madras modif addopt offers the same func-
tionality, but limited to a single modification request.

Options altering code displacement

It is possible to alter how the MADRAS patcher handles code displacement
when performing modifications that implies a change of size.

By default, the MADRAS patcher will not perform an insertion if there is
not enough space to insert a branch to the displaced code. It is possible to
set an option, PATCHOPT FORCEINS forcing it to perform all requested insertions
even when there is not enough space in the code. For specific cases this can
cause insertions to actually succeed because adjacent blocks are also moved,
thus leaving enough space for the insertions.

By default, the MADRAS patcher moves basic blocks when inserting code.
This may lead to insertion failing when a basic block is too small for the inser-
tion. An option (PATCHOPT MOVEFCTS) allows the MADRAS patcher to attempt
moving whole functions when such a case is encountered. This allows most
patching operations to succeed, but can lead to errors in the patched file if a
function has been incorrectly detected or if there are indirect branches from
other functions pointing to the middle of the moved function (this is often the
case in OpenMP codes).

Conversely, the PATCHOPT MOV1INSN option allows the MADRAS patcher to
move only one instruction.

Those options may allow more patching operations to succeed, by increasing
the risk of causing the patched executable to crash. The behaviour of the
MADRAS patcher is also not defined if those options are used on some but not
all of the modification requests in a same basic block.

Options altering branch updates

It is possible to alter how the MADRAS patcher handles the updates of branches
to instruction before which some code is added.

The default behaviour of the patcher is to update all branches to an instruc-
tion to point to the first instruction of code inserted before it.

The option PATCHOPT NO UPD EXTERNAL BRANCHES allows to restrict those
updates to the branch instructions belonging to the same function as the patched
instruction. The option PATCHOPT NO UPD INTERNAL BRANCHES allows to restrict
those updates to the branch instructions belonging to a different function as the
patched instruction

The PATCHOPT BRANCHINS NO UPD DST concerns inserted branch instructions,
and prevents the branch to be updated if instructions are inserted before its des-
tination.
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A.4.6 Changing the padding instruction

By default, the instruction used to pad sections of code moved because of code
displacement when performing modifications is the shortest nop instruction
available for the given architecture. It is possible to set it to another instruction
for a given modification using the function madras modifs setpaddinginsn.
The function madras modif setpaddinginsn allows to set it for the whole
patching session. The given instruction must have the same length as the default
padding instruction or an error will be raised.

A.4.7 Committing changes

The final step in all patching sessions must be committing the changes using
the madras modifs commit function. It will perform all staged modifications
and generate a patched file with the requested name. It is advised not to use
the same name as the original.

The operations will be performed in the following order:

• Applying requests for renaming of dynamic libraries

• Applying requests for addition of dynamic and static libraries

• Applying requests for addition of global variables

• Applying all requests for code modification (insertions, deletions and mod-
ifications) in the order of their addresses

• Saving the patched file under the given name

• Freeing the list of pending requests

At this point the generated patched file contains all requested changes, ex-
cept for those that caused an error during patching. It is not advised to keep
using the MADRAS elfdis t structure for other operations.

A.5 Logging

The libmadras API allows to record all requests performed on a disassembled
file and write them to a log file. By default, this feature is turned off and can
be activated using the madras traceon function. It is also possible to choose
the name of the log file, by default madras trace.log.

All invoked API functions will be recorded in the log, along with their pa-
rameters. A MADRAS script offers to turn such a file into a C source file,
allowing to compile it and rerun the requests.
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Appendix B

Disassembler algorithms

B.1 General description

The functions from the MADRAS disassembler allow to parse a binary ELF file
and disassemble its code. This is done by the asmfile disassemble function.
The function takes as input a MAQAO structure used to represent assembly
files (asmfile t) containing the name of the file. The file will be parsed if
necessary, then disassembled. The asmfile t structure will then be filled with
all informations retrieved from the disassembly:

• List of the assembly instructions contained in the file, including destina-
tions of direct branches

• List of labels

• Table of direct branches in the file, indexed by the destination addresses
of the branch

The library is also able to parse a static library file (archive), using the
asmfile disassemble n function. In that case, an array of asmfile t struc-
tures will be returned, each of them containing the result of the disassembly of
one of the object files contained in the archive.

B.2 ELF parsing

The disassembler is able to process files that have been already parsed or not.
If the file has not already been parsed, the ELF parser will be invoked.

Upon parsing an ELF file, the asmfile t structure will be updated to contain
a pointer to the structure used by the ELF parser to store the parsed file and
will be annotated to indicate that the file has been parsed.
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B.2.1 Labels

All the labels retrieved from the binary file will be loaded into the asmfile t

structure. They are stored inside a hash table indexed on the address of the
label and in a list ordered by the address of the labels.

B.3 Disassembly

The disassembly is performed through a linear sweep algorithm. It is is per-
formed on all sections of the ELF file containing executable code, as identified
by the ELF parser.

The disassembler uses a LR(0) parser coded as a finite state machine (FSM).
The finite state machine relies on tables describing the states and transitions to
use depending on the architecture of the file to disassemble. These tables and
the associated functions are generated by MINJAG.

The inner workings of the FSM are described in B.4.

B.3.1 Disassembler initialisation

At the beginning of a disassembly session, the disassembler initialises the FSM
context. It then retrieves the architecture for which the file to disassemble is
compiled from the ELF parser, then uses this to load the respective disassembly
tables and functions into the FSM context. An error is raised if the file is not
compiled for a recognised architecture.

The disassembler also initialises a table registering all direct branch instruc-
tions, indexed on the address of the branch destination. This table will be used
for resolving the destinations of direct branches and will be loaded to a member
of the asmfile t structure.

B.3.2 Disassembler execution

The disassembler loads the bytes of each section of the ELF file containing
executable code and invokes the FSM parser on the retrieved stream. The
parser will return a MAQAO structure (insn t) representing the instruction
and containing its opcode and operands.

For each instruction parsed, the following operations will be performed:

• Updating the virtual address of the instruction

• Updating the coding of the instruction

• Associating a label to the instruction (see B.3.3 for the rules on associating
labels)

– If a label of type function points to an address in the middle of
a disassembled instruction, the instruction is considered as badly
disassembled. It is truncated up to the address of the label and
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marked as bad, then the parsing is restarted from the address of the
label.

• If there was no parsing error, the branch table is updated if the instruction
is a branch. The error counter is decremented (minimum 0).

• If there was a parsing error, the error counter is incremented. The instruc-
tion is flagged as erroneous

• If the error counter is not set to 0, the instruction is flagged as potentially
erroneous

• The instructions is annotated depending on the section being disassem-
bled.

• The instruction is added to the list of disassembled instructions.

B.3.3 Associating labels to instructions

All instructions are associated to a label, which is the last eligible label encoun-
tered. If a label has the same address as an instruction associated to it, the
label is updated as well to point to this instruction.

An eligible label is defined according to the following rules:

• It is not of type “dummy”. A “dummy” label will however be updated to
point at the instruction (those labels can be added by the patcher).

• It does not begin with a ’.’ character

• If more than one label is associated to the instruction address, the label
of type function will be eligible.

– A label is of type function if identified as such by the ELF parser or
in the debug informations if present

– A label not identified as a function by the debug informations if they
are present in the file is never eligible

– If more than one label of type function is present at a given address
or if no labels of type function are present but multiple labels are
defined, one of the possible labels will be eligible (usually the last
one to appear in the ELF file).

B.3.4 Disassembler completion

When all sections have been disassembled, the instruction list is scanned once
more.

• Instructions referencing an address in the ELF file not in the range of
instructions are added to the table of targets in the ELF parser structure
containing the parsed file.
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• Instructions whose address is present in the table of branches are set as
branch targets for the instructions branching to this address.

• An “orphan instruction” flag is set on every instruction following an un-
conditional branch until a branch destination is identified

All intermediate structures used are then freed and the asmfile t structure
is annotated to indicate that it has been disassembled.

B.3.5 Raw disassembly

The raw disassembly mode is mainly intended for tests of the disassembler per-
formances. It skips the parsing of the ELF file and only attempts to disassemble
all or a part of the binary file against a given architecture. Labels are not han-
dled in any way since they were not retrieved from the ELF file.

B.4 Finite state machine

We will describe here the implementation of the LR(0) parser used by the
MADRAS disassembler as a finite state machine automaton.

We will not cover here the general principles behind LR-parsing and finite
state machines.

B.4.1 Main principles

The main components the automaton uses are the following:

• Input stream: The stream of data to parse, and the pointer to the
character being currently read

• Transition end pointer: Pointer in the input stream to the byte imme-
diately after the already processed bytes

• States: Array of states for the finite state machine being currently used
to parse the input stream.

• Buffer: Stack containing the results of the reductions from the current
parsing operation and the associated states

• Tokens: Array containing the values of the tokens decoded during the
current parsing operation.

• Variables: Array containing the results of the executions of the semantic
actions of reduced variables during the current parsing operation

All informations needed by the automaton are stored in a fsmcontext t

structure.
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Automaton states

There are two types of states:

• Shift states are states leading to other states. They are associated to a
list of transitions values, accessed through the array of the first sub values
of the transitions.

• Reduction states are “leaf” states corresponding to the reduction of a
symbol. They are associated to a semantic action.

Some of the reduction states are also associated to a final action, that will
have to be executed once a word is parsed. For the disassembler, these final
actions are used to fill the extensions.

Automaton transitions

The transitions in a state are separated between transitions on a reduced gram-
mar symbol and on binary values.

Transitions on a reduced grammar symbol are stored as a table indexed on
the identifier of the symbols, containing the identifier of the next state associated
to this transition value. If a state does not contain a transition over a symbol,
the corresponding cell in the table contains a special identifier indicating a match
failure.

Transitions on values are broken down into a series of sub values 1 byte long
or smaller. Each sub value is accompanied by a mask specifying which bits of
the sub value are useful (the corresponding bit in the mask is set to 1 if the bit
is useful, 0 otherwise). Each sub value contains either a table containing the
following sub values in the transition or the identifier of the next state if the sub
value was the last in the transition. A cell in a table of sub values may contain a
list of sub values with different masks, ordered by priority of the corresponding
transitions.

B.4.2 Initialisation

Initialising FSM context

During initialisation of the FSM, a new fsmcontext t structure is created. This
creation needs a pointer to the function loading the details of the FSM to use.
Such a function must have the following characteristics:

• Input: A pointer to an already allocated fsmcontext t structure

• Actions: Initialises the following members of the structure:

– Number of symbols (token and variables) used in the automaton

– Array of states used by the automaton. This array must be ordered
so that the first state of the automaton is the first in the array
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– Array of pointers to the functions to execute at the end of a successful
parsing.

– Maximum size in bits of a transition

Those parameters will remain loaded until the FSM context is freed. In the
context of the disassembler, they are equivalent to loading the specifics for the
parsing of a given architecture in the FSM.

Optionally, an error handler can be set. This allows to have a specific func-
tion being executed on the current output when a parsing error occurs.

All buffers vector are initialised to have the length of the maximum size of a
transition, except for the entry buffer which is initialised to have the length of
the maximum size of an instruction. This allows to avoid reallocating memory
for those buffers, for better performances.

Initialising parsing run

A parsing run is the parsing of a given input stream. The stream to parse is
initialised using fsm setstream. This allows to set a string of bytes, the offset
in the string at which the parsing must begin and the number of bytes to parse
in the string.

The fsm init function must next be invoked to signal the parser that a new
run will begin.

This step can be repeated multiple times for a given FSM context if multiple
runs on different streams are needed for a given FSM.

B.4.3 Parsing a stream

During the parsing of a stream, the automaton will read the stream attempting
to parse a word. Once the parsing is complete, either because a word has been
parsed or a parsing error occurred, the automaton will be reset and the next
word will be read. If the length of stream to parse is reached, the parsing will
stop.

Matching with transitions

Matching an input value against a group of transitions on values is performed
through the following algorithm:

1. Initialising the array of sub values with the array of the first sub values in
the transition

2. While the next state is not found

• If the table is marked as always OK, check if the length remaining
in the input stream is bigger than the length of the sub values in the
table and raise a parser error if it is not
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• If the table is marked as containing a single sub value, retrieve a value
with the length of the sub values from the input stream and check it
against the sub value in the table. The transition end pointer is then
moved by the length of the sub value.

• If the table is marked as containing multiple values, retrieve a value
with the length of the sub values from the input stream and looks up
the cell whose index is this value. The transition end pointer is then
moved by the length of the sub value.

– If the cell does not contain a sub value, raise a parser error

– If the cell contains a list of sub values and masks, check them
against the input value

• If no parser error was raised, a sub value matching the input was
found.

– If it contains a state identifier, the transition is complete.

– Otherwise, it contains an array of the next sub values, which is
loaded as the current array.

Parsing a word

The parsing of a word is performed according to the following steps:

1. Resetting the FSM. The buffer is emptied and the stack of states is reset
to contain the first state of the automaton

2. Reading a number of bytes equal to the maximum length of an instruction
(rounded up if necessary)

3. Processing the state on the top of the stack:

• If it is a shift state, using its transitions to identify the next state

– If a reduction just occurred, the transition will be attempted
matching the identifier of the reduced symbol (see B.4.3).

– If this match failed or if no reduction occurred, the transition
will be attempted on the values from the input buffer. For each
group of transition over values:

(a) Extracting a test buffer of the same length as the transitions
in the group from the entry buffer

(b) Attempting to match the test buffer with the the transitions
in the group as defined in B.4.3.

– If a match is made, the state associated to the transition is added
to the top of the stack of states.

– If no match is made on any transition group, an error is raised.
The error handler function is executed and the FSM is reset.

• If it is a reduction state, it contains informations on the elements to
retrieve and where to retrieve them
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(a) The reductions will be performed by removing the bits from the
entry buffer

– Bit fields are removed and discarded

– Tokens are reduced into structures containing their value and
length, and stored in a cell of the array of reduced values from
the fsmcontext t structure corresponding to their identifier
from the grammar

– Variables (symbols that have been reduced) are added to the
buffer, but their value is not kept.

(b) The semantic action associated to the state is added to the list
of semantic actions.

(c) If the state is associated to a final action, the final action to
perform is set for the parsing of this word. No word should be
associated to more than one final action.

(d) The stack of states is updated to remove the states associated to
all symbols removed from the buffer.

i. The reduced variable is returned, to be used as input for a
possible match for the next shift state

• If the top symbol has been reduced, the processing of the states stops.

4. The list of semantic actions is executed, in the order of their occurrences

5. The pointer to the result of the parsing is added to the first cell of the
array of reduced symbols

6. If there is a final action, it is executed

7. The array of reduced symbols and the list of semantic actions are reset
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Appendix C

Patcher algorithms

C.1 General description

The functions from the patcher allow to patch executable files. The following
operations are supported:

• Insertion of function calls

• Insertion of assembly code

• Replacing a group of instructions by another

• Deletion of code

• Insertion of global variables

All data used by the patcher is stored into a patchfile t structure for the
duration of the patching session.

C.2 Main operations

C.2.1 Inserting assembly code

When inserting code, the block containing the insertion site will be displaced
as explained in 4.3.2. The inserted instructions are inserted into the displaced
block at the appropriate address.

If the code has to be inserted before the given address, an extra step will
be the update of all branch instructions to this address to point at the inserted
branch pointing to the displaced code. This ensures that the inserted code will
be always executed before the original instruction.
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C.2.2 Inserting function call

The patcher allows to insert a call to a function. The current version allows to
insert calls to functions already present in the binary or defined in a dynamic
or static library.

When inserting a function call, the block containing the insertion site will be
displaced as explained in 4.3.2. The assembly instructions for the function call
will be inserted into the displaced block at the appropriate location, surrounded
by the instructions needed to save and restore the context if requested. The
assembly instructions are retrieved from architecture-specific functions.

If the function is defined in a dynamic library, a new block of code containing
the architecture-specific instructions for the stub used for invoking an external
function is added with the appropriate instructions in a separate list of inserted
instructions. The inserted call will point to this stub.

If the function is defined in a static library, the code of the function will be
inserted into the patched file. The inserted call will point to the entry point of
the function. The relocations of the inserted function will be handled by the
ELF parser and editor.

A function call insertion is otherwise handled as an insertion of assembly
code, with the instructions for invoking the function and saving or restoring the
context considered as the instructions to insert.

C.2.3 Replacing a group of instructions

Replacing a group of instructions can serve two purposes:

• Modifying an instruction. In effect, this amounts to remove it and replace
it by another instruction with the modified characteristics.

• Replacing a group of instructions by nop instructions.

If the replacement causes the code to change size, which happens when we are
modifying an instruction to replace it with an instruction coded of a different
length, the block containing the modification to performed will be moved as
described in 4.3.2. Otherwise, the modification will directly take place in the
original code.

C.2.4 Deletion of code

When deleting code, the block containing the deletion site will be displaced as
explained in 4.3.2. The instructions are then deleted from the displaced block
at the appropriate location.

C.2.5 Insertion of global variables

Global variables are stored during the patching session in the patchfile t

structure. The content of each variable is copied there, and the globvar t
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structure representing the global variable is updated to store the offset in the
memory area where the content of this variable was copied.

Global variables used in inserted instruction lists (either assembly code or
function insertion) are referenced by adding a new ELF target using the ELF
editor. Those references will ensure the code of the instructions using these
variables as RIP-based operands are updated when building the patched file.

C.2.6 Handling conditions

In the current version, conditions can be set on an insertion modification (in-
struction list or function) only. The conditions will be serialised before the
actual insertion takes place, arranging them in a format convertible into assem-
bly instructions.

A condition for an insertion is represented as a binary tree, whose leaves
are the conditions formed by a comparison between a numerical value and an
operand, and the other nodes are logical comparisons between conditions. The
serialisation aims at ordering the leaves conditions so that they can be expressed
as a sequence of comparisons and conditional branches. Therefore the goal is to
identify for each condition the test to be performed and the destination of the
conditional branch, which can be either another condition, the beginning of the
insertion, meaning the whole condition on the insertion was evaluated as true,
or its end, meaning the whole condition on the insertion was evaluated as false.

C.3 Committing modifications

Committing modifications launches the actual patching of the file from the list of
pending modifications. The operation will first apply all pending modifications,
then finalise the patching session and generate the patched file.

C.3.1 Applying modifications

Pending modifications are applied in the following order:

• Dynamic libraries renaming through invocation of the ELF editor

• Insertion of dynamic libraries through invocation of the ELF editor

• Reservation of the space for global variables and updating the offset of the
variables

• Loop over the list of modification requests to apply them. This is actually
done in two steps, first processing the modifications, then applying them.
Only modifications that were successfully processed are applied. In the
current version, only the insertions (code or function call) are processed,
other modifications being simply flagged as successfully processed.

– The following actions are performed when processing a modification:
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∗ Conditions (if existing) are serialised

∗ Associated else modifications are processed and linked to the
insertion

∗ If the insertion corresponds to a external function call, its entry
point is inserted.

· If it is a dynamic function, a new stub is added to the list
of instructions representing the new section for invoking dy-
namic functions

∗ Links the insertion to other modifications (fixed or floating) if
needed

– The actions described in C.2.1, C.2.3 and C.2.4 are performed when
applying a modification

• The patching session is finalised (see C.3.2)

• The label modifications requests are then applied

C.3.2 Finalising patching session

The following actions are performed when finalising a patching session:

• The symbols in added object files (static patching) are resolved, building
a list of the necessary object files to add to the file from the list of static
libraries to insert.

• Branch rebounds are removed by replacing unconditional direct branches
(not those used to call functions) branching to another unconditional
branch by an unconditional branch to the destination of the second branch.
If this results in branches in the inserted code section pointing to the in-
struction immediately following them, these are deleted.

• The size of the added code section is calculated. A safety length, equal
to the difference between the length of a short and a long jump times the
number of branches in the inserted code, is added to this size.

• The binary coding of the inserted code section is updated.

• The size of the added section containing stubs for invoking external func-
tions is calculated.

• The ELF editor is invoked to assign section identifiers to the new sections:

– Data, if global variables are inserted or if the stack is moved to a
location in the file

– Additional relocation section for invoking dynamic functions

– Code, if code modifications were performed

• The addresses of inserted object files (static patching) are updated.
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• All references to inserted data are updated by invoking the ELF editor.

• The allocated size of the data section is increased with the size of the
moved stack if necessary.

• The binary code and addresses of the new relocation sections for invoking
external functions are updated.

• The addresses and coding in the inserted code section are updated. This is
done through a loop until both are stable, as the different sizes of branch
instructions means that the size of an instruction may increase when up-
dating its code, thus spreading another branch instruction further from its
destination and necessitating it to change coding as well, also increasing
its size.

• The address references in the ELF file are updated by invoking the ELF
editor and architecture specific functions for updates.

• The binary data contained in the sections holding code and the relocations
instructions are updated.

• The ELF editor is invoked to generate the patched file. The sections will
be reordered to handle their changes in sizes. A new program segment
is added to the patched file containing all the added sections of code and
data.

C.4 Interface with architecture specific code

The patcher handles multiple architectures through the use of a driver defining
a set of architecture specific functions that will be loaded from the relevant
architecture (retrieved from the patched file). Those functions must be defined
for each architecture implemented by the patcher.

C.4.1 Description of the functions

Each function must be prefixed with the architecture name. They will be loaded
into a driver identifying them with their suffixes.

Assembler function

This function allows to assemble an instruction for the relevant architecture. It
is defined in the architecture-specific assembler.

Generation of a function call

This function generates the instruction list for invoking a function. The gener-
ated instructions must include the following operations:
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• Compare and branch instructions for the serialised conditions

• Parameters passing

• Saving the context (if necessary)

• Moving or shifting the stack (if necessary)

• Aligning the stack

• Retrieving return value

The function also returns a pointer to the actual branch instruction per-
forming the function call, and pointers to all instructions referencing a memory
address, to allow linking them with the structures from the ELF editor.

Generation of an unconditional branch

This function must generate an instruction list for performing an unconditional
branch to an instruction.

Generation of a small unconditional branch

This function must generate an instruction list for performing an unconditional
branch to an instruction, using the short version of the instruction if it exists
for the given architecture, otherwise return NULL if this architecture does not
defines branch instructions of different sizes. The function must also return the
range accessed by this instruction.

Generation of a nop instruction

This function must generate a nop instruction of a given size. If the architecture
does not define nop instructions of this size, the variant with the closest size will
be returned. Requesting a size 0 returns the smallest possible nop instruction.

Update of an instruction referencing memory

This function must update the binary coding of an instruction referencing a
memory address based on the instruction’s address. It will be used chiefly by
the ELF editor when updating targets of RIP-based memory instructions.

Generation of a PLT stub

This function must generate the instruction list used in ELF files for invoking
a dynamic function. It must return pointers to the instructions in the list
referencing the global offset table and the beginning of the stub used for invoking
the dynamic loader.
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Other functions

Other functions must also perform the following operations:

• Testing if a given instruction is a nop .

• Returning an operand used to reference a memory address based from the
instruction’s address.

• Returning branch instruction performing the logical opposite of a condi-
tional branch.

• Returning the instructions used to perform a return from an invoked func-
tion.

• Adding the instructions representing conditions to an instruction list.

70


