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Abstract. Identifying performance bottlenecks in applications is crucial
to improve their efficiency, but it might be difficult to precisely assess
their impact on performance: in particular, two performance problems
can interact making it difficult to isolate and therefore to correct them.
We propose PAMDA, a methodology to single out performance problems
through hierarchical bottlenecks detection. Important potential perfor-
mance issues are classified in a ’Performance Breakdown Tree’ which is
used to drive our iterative analysis cycle, prioritizing the most relevant
problems. Our system relies on MAQAO toolset and code’s differential
analysis. While MAQAO is a performance analysis and optimization tool
suite, the differential analysis approach, which is implemented through
DECAN tool, consists in quantifying performance changes when applying
controlled transformations to the target code. Our focus will be on perfor-
mance issues raised by processors and memory sub-systems in multicore
architectures. We will demonstrate the approach on loops extracted from
real life HPC applications.

1 Introduction
The recent progress of high performance architectures generate new challenges
for performance evaluation tools: more complex processors (larger vectors, many-
cores), more complex memory systems (multiple memory levels including NUMA,
multiple level prefetch mechanisms), more complex systems (large increase in
core counts up to several hundred of thousands now) are all key issues which
need to be simultaneously optimized to get a decent performance level.

To work properly, all of these mechanisms require specific properties from
the target code. For example, good exploitation of memory hierarchies relies
on good spatial and temporal locality within the target code. The lack of such
properties induces variable performance penalties: such combinations (mismatch
between hardware and software) are denoted performance pathologies. Most of
them have been identified (cf. Table 1) and efficient workarounds are well known.
The current generation of performance tools (TAU [1], PerfExpert [2], VTune [3],
Acumem [4], Scalasca [5], Vampir [6]) is excellent at detecting such pathologies
although some are fairly specialized: for instance, Scalasca/Vampir mainly ad-
dresses MPI/OpenMP issues, requiring the combined use of several tools to get
a global overview of all of the performance pathologies present in an application.



Most of the current tools do not provide any direct insight on the potential
cost of a pathology. Furthermore, the user has no idea about what the potential
benefit of optimizing his code to fix a given pathology is. These two points
prevent him from focusing on the right issue. For example, let us consider a
program containing two hot routines A and B, respectively consuming 40 %
and 20 % of the total execution time. Let us further assume that the potential
achievable performance gain on A is 10 % while on B it is up to 60 %. The overall
performance impact on B is up to 60 % * 20 % = 12 % while on routine A, it is
at best 10 % * 40 % = 4 %. As a consequence, it is preferable to focus on routine
B. Additionally, the user has no clue of what the current performance level is,
compared with the best one achievable, i.e. he may not know when optimizing
is worth the investment.

In general, the situation is even worse since a simple loop may simultaneously
exhibit several performance pathologies. In such cases, most of the tools cited
above give no hint to the user of which ones are dominant and really worth fixing.
For instance, a loop can suffer from both a high miss rate and the presence of
costly Floating-Point (FP) operations such as div/sqrt: trying to improve the
hit rate does not improve the performance if the dominant bottleneck is the
div/sqrt operations.

In this paper, we present a coherent set of tools (MicroTools [7], CQA
[8, 9, 10], DECAN [11], MTL [12]) to address this lack of user’s guidance in
the tedious and difficult task of program optimization. These tools are inte-
grated in a unified environment (PAMDA) to help the user to quickly identify
performance pathologies and to assess their cost and impact on the global perfor-
mance. Depending upon which performance pathologies is to be fixed, different
techniques (static analysis, value profiling, dynamic analysis) appear to be more
appropriate and give a more accurate answer: for example, detecting a badly
strided access is immediate through value tracing of array addresses while the
same task is extremely tedious when only using static analysis or hardware coun-
ters. Anyway, such array access tracing should only be triggered when necessary
due to its high cost. In this paper, we focus on providing performance insight at
the core level and parallel OpenMP structures. Our analysis can be combined
with MPI analysis provided by tools such as Scalasca, TAU or Vampir.

Through the integrated environment PAMDA, we aim at providing the fol-
lowing contributions:

– Getting a global hierarchical view of performance pathologies/bottlenecks.
– Getting an estimate of the impact of a given performance pathology taking

into account all other present pathologies.
– Demonstrating that different specialized tools can be used for pathology

detection and analysis.
– Performing a hierarchical exploration of bottlenecks according to their cost:

the more precise but expensive tools are only used on specific well chosen
cases.

Section 2 presents a motivating example in detail. Section 3 details the various
key components of PAMDA while Section 4 describes the combined use of these



different tools. Section 5 describes some experimental use of PAMDA. Section 6
gives an overview of related works and the added value of the PAMDA system.
Finally, Section 7 gives conclusions and future directions for improvement.

Table 1. A few typical performance pathologies.

Pathologies Issues Workarounds
ADD/MUL balance ADD/MUL parallel execution Loop fusion, code rewriting

(of fused multiply add unit) underused e.g. Use distributivity
Non pipelined execution Presence of non pipelined Loop hoisting, rewriting code to use
units instructions: div and sqrt other instructions eg. x86: div and sqrt
Vectorization Unvectorized loop Use another compiler, check option

driving vectorization, use pragmas to
help compiler, manual source rewriting

Complex control flow graph Prevents vectorization Loop hoisting or code specialization
in innermost loops
Unaligned memory access Presence of vector-unaligned Data padding, use pragma and/or

load/store instructions attributes to force the compiler
Bad spatial locality Loss of bandwidth and cache Rearrange data structures or loop
and/or non stride 1 space interchange
Bad temporal locality Loss of perf. due to avoidable Loop blocking or data restructuring

capacity misses
4K aliasing Unneeded serialization of Adding offset during allocation,

memory accesses data padding
Associativity conflict Loss of performance due to Loop distribution, rearrange data

avoidable conflict misses structures
False sharing Loss of bandwidth due to coherence Data padding or rearrange data

traffic and higher latency access structures
Cache leaking Loss of bandwidth and cache space due Use bigger pages, blocking

to poor physical-virtual mapping
Load unbalance Loss of parallel perf. due to Balance work among threads or remove

waiting nodes unnecessary lock
Bad affinity Loss of parallel perf. due to Use numactl to pin threads on physical

conflict for shared resources CPUs
High number of memory Too many streams for hardware See conflict misses
streams prefetcher or conflict miss issues
Lack of loop unrolling Significant loop overhead, lack of Try different unrolling factors, unroll and

instruction-level parallelism jam for loops nest, try classical affinities
(compact, scatter, etc.)

2 Motivating Example

Figure 1 presents the source code of one of the hottest loops extracted from
POLARIS(MD) [13]: a molecular dynamics application developed at CEA DSV.
POLARIS(MD) is a multiscale code based on Newton equations: it has been
successfully used to model Factor Xa involved in thrombosis.

This loop simultaneously presents a few interesting potential pathologies:

– Variable loop trip count.
– Fairly complex loop body which might lead to inefficient code generation by

the compiler.
– Presence of div/sqrt operations.
– Strided and indirect access to arrays (scatter/gather type).
– Multiple simultaneous reduction operations leading to inter iteration depen-

dencies.

All these pathologies can be directly identified by simple analysis of the source
code. The major difficulty is to assess the cost of each of them and therefore to
decide which should be worked on.



nj1 = ndim3d*j + nc ; nj2 = nj1 + nvalue1 ; nj3 = nj2 + nvalue1

u1 = x11 - x(nj1) ; u2 = x12 - x(nj2) ; u3 = x13 - x(nj3)

rtest2 = u1*u1 + u2*u2 + u3*u3 ; cnij = eci*qEold(j)

rij = demi*(rvwi+rvwalc1(j))

drtest2 = cnij/(rtest2 + rij) ; drtest = sqrt(drtest2)

Eq = qq1*qq(j)*drtest

ntj = nti + ntype(j)

Ed = ceps(ntj)*drtest2*drtest2*drtest2

Eqc = Eqc + Eq ; Ephob = Ephob + Ed

gE = (c6*Ed + Eq)*drtest2 ; virt = virt + gE*rtest2

u1g = u1*gE ; u2g = u2*gE ; u3g = u3*gE

g1c = g1c - u1g ; g2c = g2c - u2g ; g3c = g3c - u3g

gr(nj1,thread_num) = gr(nj1,thread_num) + u1g

gr(nj2,thread_num) = gr(nj2,thread_num) + u2g

gr(nj3,thread_num) = gr(nj3,thread_num) + u3g

do j = ni+nvalue1,nato

end do

div/sqrt

Indirect

accesses
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Fig. 1. A Fortran source code sample and its main performance pathologies highlighted
in pink.

Fig. 2. Comparing static estimates obtained by CQA with dynamic measurements
performed on different code variants generated by DECAN of both of the original and
vectorized versions: REF is the reference binary loop (no binary modifications intro-
duced by DECAN), FP (resp. LS) is the DECAN binary loop variant in which all
of the Load/Store (resp. FP) instructions have been suppressed, REF NSD (resp.
FP NSD) is the DECAN binary loop variant in which only FP div and sqrt in-
structions (resp. all of the Load/Store and FP div and sqrt instructions) have been
suppressed. The y-axis represents the number of cycles per source iteration: lower is
better.

A first value profiling of the loop iteration count reveals that the trip count
is widely varying between 1 and 2000. However the amount of time spent in



the small (less than 150 iterations) loop trip count instances remains limited
to less than 10 %. The remaining interval of loop trip counts is further divided
into 10 deciles and one representative instance is selected for each of them.
Further timings on analyzing loop trip count impact indicate that the average
cost per iteration globally remains constant independently from the trip count.
Therefore, the data size variation seems to have no impact on performance: the
same optimization techniques should apply for instances having a loop trip count
between 150 and 2000.

The static analyzer (see Figure 3) provides us with the following key informa-
tion: in the original version, neither Load/Store (LS) operations nor FP ones are
vectorized. It further indicates that due to the presence of div/sqrt operations,
the FP operations are the main bottlenecks. It also points out that even if the
FP operations were vectorized, the bottlenecks due to div/sqrt operations would
remain. However this information has to be taken with caution since the static
analyzer assumes that all data accesses are ideal, i.e. performed from L1.

Dynamic analysis using code variants generated by DECAN is presented in
Figure 2. Initially, the original code (in dark blue bars) shows that FP operations
(see FP versus LS DECAN variants) clearly are the dominating bottlenecks.
Furthermore, the good match between CQA and REF clearly indicates that
analysis made by CQA is valid and pertinent. Optimizing this loop is simply
obtained by inserting the SIMD pragma ’!DEC$ SIMD’, which forces the compiler
to vectorize FP operations. However, the compiler does not vectorize loads and
stores due to the presence of strides and indirect access. Rerunning DECAN
variants of this optimized version (see light blue bars in Figure 2) shows that
even for this optimized version FP operations still remain the key bottleneck
(comparison between LS and FP). Therefore, there is no point in optimizing
data access, the only hope of optimization lies in improving div/sqrt operations:
for example SP instead of DP. Unfortunately, such a change would alter the
numerical stability of the code and cannot be used.

The major lesson to be drawn from this case study is that a combined use of
CQA and DECAN allows us to quickly identify the optimization to be performed
and also gives us a clear halt on tackling other pathologies without impacting
overall performance.

3 Ingredients: Main Tool Set Components

Performance assessment issues require robust methodologies and tools. There-
fore, in order to systematically provide programmers with a performance pathol-
ogy hierarchy and its related costs, the current work considers two toolsets: Mi-
croTools, for microbenchmarking the architecture, and the MAQAO [8, 9, 10]
framework, which is a performance analysis and optimization tool suite.

MAQAO’s goal is to analyze binary codes and to provide application de-
velopers with reports to optimize their code. The tool mixes both static (code
quality evaluation) and dynamic (profiling, characterization) analyses based on
the ability to reconstruct low level (basic blocks, instructions, etc.) and high level



structures such as functions and loops. Another MAQAO key feature is its ex-
tensibility. Users easily write plugins thanks to an embedded scripting language
(Lua), which allows fast prototyping of new MAQAO-tools.

From MAQAO, PAMDA extensively uses three tools including the Code
Quality Analyzer tool (CQA) exposed in section 3.2, the Differential Analysis
framework (DECAN) presented in section 3.3, and finally the Memory Tracing
Library (MTL) in section 3.4. We briefly present the main contribution of each
of these tools to PAMDA and then describe their major characteristics.

3.1 MicroTools: Microbenchmarking the Architecture

Microbenchmarking [14, 15, 16] is an essential tool to investigate the real poten-
tial of a given architecture: more precisely, in PAMDA, microbenchmarking is
first used to determine both FP units performance and achievable peak band-
width of various hardware components such as cache/RAM levels, and second to
estimate the potential cost of various pathologies (unaligned access, 4K aliasing,
high miss rate, etc.).

For achieving these goals, PAMDA relies on MicroTools , consisting of two
main components: MicroCreator tool automatically generates a set of bench-
mark programs, while MicroLauncher framework executes them in a stable and
closed environment.

3.2 CQA: Code Quality Analyzer

In PAMDA, the CQA framework is used first for providing a performance target
under ideal data access conditions (all operands are supposed to be in L1), sec-
ond for providing a bottleneck hierarchy analysis between the various hardware
components of the core (FP units, load/store ports, etc.) and third for detect-
ing some performance pathologies (presence of inter iterations dependencies,
div/sqrt operations) which are worth investigating via specialised DECAN vari-
ants. The ideal assumption (all operands in L1) is essential for CPU bound codes
such as the POLARIS(MD) loop studied in the previous section. For memory
bound loops, it needs to be complemented with a dynamic analysis.

CQA is a static analysis tool directly dealing with binary code. It extracts
key characteristics, and detects potential inefficiencies. It provides users with
general code metrics such as details on basic loop characteristics, the number
of instructions, µops, and used XMM/YMM vector registers. CQA also allows
users to obtain more in-depth information on the loop execution on the target
architecture. For example, the tool provides a reliable front-end pipeline execu-
tion report, which is an estimated number of cycles spent during each front-end
pipeline stage. The tool gives the same type of report for the back-end. Finally,
CQA provides a cycle estimate of loop body performance under ideal conditions:
all operands in L1, no branches and infinite loop count (steady state behavior).

CQA is able to report both low and high level metrics/reports (figure 3). For
example, when a loop is not fully vectorized, the high level report provides a
potential speedup (if all instructions were vectorized) and corresponding hints



(compiler flags and source transformations). For the same loop, some low level
metrics/reports show the breakdown of vectorization ratios per instruction type
(loads, stores, ADDs, etc.) giving the user a more in-depth view of the issue.

CQA supports Intel 64 micro-architectures from Core 2 to Ivy Bridge.

Fig. 3. CQA output.

3.3 DECAN: Differential Analysis

In PAMDA, DECAN is used for quantitatively assessing performance pathologies
impact. The general idea is fairly simple: a given pathology is associated with
the presence of a given subset of instructions, for example div/sqrt operations,
then DECAN generate a binary version of the loop in which the corresponding
instructions are deleted or properly modified. This altered binary is measured
and compared with the original unmodified version.

The resulting binary does not in general preserve semantics, i.e. numerical
values generated with DECAN variants are not identical to the original ones.
For our performance analysis objective, this is not a critical issue but for the
subsequent program execution, control behavior might be altered. To avoid such
problems, the original loop is systematically replayed after the execution of the
modified binary in order to restore correct memory values.

DECAN starts by using static analysis on the target loop produced by CQA.
The goal is to select instruction subsets to be transformed, as the selection pro-
cess is driven by the desired type of behavior to highlight. Afterward, instructions
are carefully transformed in a manner that minimizes unwanted side effects that
may disturb the observations, such as changes in the code layout and instruction
dependencies. It also inserts some monitoring probes to be able to accurately
compare the modified part of the code with the original one. Also, and as stated
earlier, DECAN is built on top of the MAQAO framework, hence, it uses the
MAQAO disassembler/patcher to forward modifications on the instructions.



Using DECAN’s features, PAMDA generates altered binaries, thereby split-
ting performance problems between CPU, memory, and OpenMP issues. Table
2 presents a range of loop variants used within the methodology discussed in
Section 4.

Table 2. DECAN variants and transformations.

Variant
Type of SSE/AVX

Transformation
instructions involved

LS All arithmetic instructions Instruction deleted

FP All memory instructions Instruction deleted

DL1 All memory instructions Instruction operands modified to
target a unique address

NODIV All division instructions Instruction operands modified to
target a unique addresses

NORED All reduction instructions Instruction deleted

S2L All store instructions Converted into load instructions

NO STORE All store instructions Instructions are deleted

3.4 MTL: Memory Tracing Library

Within PAMDA, MTL provides specific analysis of pathologies related to data
access patterns in particular stride values, alignment characteristics, data sharing
issues in multi-threaded codes, etc. MTL works by tracing addresses and by
generating compact representations of data access patterns. MTL is not limited
to innermost loops but directly deals with multiple nested loops, allowing to
detect more subtle pathologies: for example, row major instead of column major
accesses for a Fortran array (stored column wise) are automatically detected. To
perform these analysis, MTL uses the MAQAO Instrumentation Language (MIL)
[17]. This language makes the development of program analysis tools based on
static binary instrumentation easier. In fact, MIL is a specific language for object-
oriented and event-directed domains to perform binary instrumentation at a high
level of abstraction using structural objects (functions, loops, etc.), events, filters,
and probes.

4 Recipe: PAMDA Tool Chain

Individual tools are the building blocks that PAMDA glue together through a set
of scripts (cf all the diagrams). These scripts are under development but most of
the principles have been already evaluated. Figure 4 presents PAMDA overall or-
ganization, which includes application profiling, cost analysis, structural checks,
CPU and memory subsystems evaluation, and finally OpenMP evaluation for
parallel applications. The current section describes PAMDA’s components.



Fig. 4. PAMDA overview.

4.1 Hotspot identification

To limit the processing cost, we focus on the most time consuming portions of the
code. Our target loops are defined as the loops with a cumulated execution time
exceeding 80% of the total execution time. It should be noted that with such an
aggregated measurement, we can end up with a large number of loops with small
individual contributions. Such target loops are identified using MAQAO sampling.

4.2 Performance overview

Fig. 5. Performance investigation
overview. ’?’ represents a condition
and ’T’ means the condition is True,
otherwise it is False (’F’).

The PAMDA approach divides per-
formance bottlenecks into two main
categories (Figure 5): memory sub-
system and CPU. Then, their respec-
tive contribution to the overall execu-
tion time is quantified using DECAN
transformations LS (assessing memory
subsystem performance) and DL1 (as-
sessing CPU subsystem performance).
The ratio of these contributions reveals
whether the loop is memory or/and
CPU bound. Ideally, pipeline and out
of order mechanisms insure that cy-
cles spent for memory accesses and for
arithmetic operations perfectly over-
lap: as a result, the time taken by REF

should be the maximum time taken ei-
ther by LS or DL1. In such a case, only
the slower component needs optimiz-
ing. If the time taken by LS and DL1

is similar, the workload is said to be
balanced: optimizing both components is necessary to improve the loop’s per-
formance. Finally, when cycles taken by the memory and CPU components are
poorly covered by one another (unsaturation), optimizing either of them can
be sufficient to gain overall performance.



4.3 Loop structure check

Fig. 6. Detecting structural
issues. ’Iter count’ illus-
trates iteration counts from
the main loop.

Loop structure issues can be detrimental to per-
formance, and may be detected using DECAN’s
loop trip counting feature. Indeed, in the case
of unrolling or vectorization, peel and tail scalar
codes may have to be generated to cover for re-
maining iterations. If too much time is spent in
these peel and tail codes, this might indicate the
unroll factor is too high with respect to the source
loop iteration count. To detect such cases, loop
trip counts for each version (peel/tail/main) are
determined, and we check whether the main loop
is processing at least 90 % of the source code it-
erations.

In some cases, the number of iterations per
loop instance may not be large enough to fully
benefit from unrolling or vectorization. This is
easily highlighted by comparing the dynamic ex-

ecution time of the DL1 DECAN variant with the CQA estimate, as the latter
assume an infinite trip count. The difficulty to optimize such loops is exacerbated
when the loop trip counts are not constant.

4.4 CPU evaluation

Fig. 7. DL1 subtree: CPU performance
evaluation. Except DL1 and NORED,
others metrics used by conditioners are
extracted from CQA static analysis.

Besides data accesses, CPU perfor-
mance may be limited by other
pathologies such as long dependency
chains (deps), reductions (RED), scalar
instructions or long latency floating
point operations (div): these patholo-
gies can be detected through the
combined use of CQA and DECAN
(Figure 7). The front-end can also
slow down the execution by failing
to provide the back-end with micro-
operations at a sufficient rate. Com-
paring their contribution to L1 perfor-
mance (DL1) is a cost-effective way to
identify such problems. Finally, CQA
can provide us with estimations of the
effect of vectorizing a loop. We pre-
cisely quantify CPU related issues, en-
abling us to reliably assess potential
for optimizations such as getting rid
of divisions, suppressing dependencies

or vectorizing. This information can guide the user’s optimization decisions.



4.5 Bandwidth measurement

Data access rates from different cache levels / RAM highly depend on several
factors, such as the instructions used or the access pattern.

Table 3. Various vector/scalar load
bandwidths estimation in bytes per cy-
cle for each memory level (Sandy Bridge
E5-2680).

Instruction L1 L2 L3 RAM

A
V

X vmovaps 31.74 15.05 10.81 5.10
vmovups 31.73 14.96 10.81 5.10

S
S

E

movaps 30.72 18.16 10.80 5.14
movups 29.53 17.07 10.79 5.23
movsd 15.67 11.55 10.61 5.36
movss 7.91 6.65 6.39 4.97

To this end, we generate microker-
nels loading data in an ideal stream
case, testing different configurations
for load operations, with or with-
out various software prefetch instruc-
tions, and/or splitting the accessed
data in streams accessed in parallel.
We also force misaligned addressing
for vmovups and movups. Finally, we
use Microlaunch to run these bench-
marks for each level of the memory hi-
erarchy.

On our target architecture, 128-bit
SSE load instructions could roughly
achieve the same bandwidth as 256-bit
AVX (Table 3) throughout the whole

memory hierarchy. Except for movss, all instructions could attain similar band-
widths in L3 and RAM: only the type of instruction really matters for data
accesses from L1 or L2, and data alignment is not as relevant as it once was.

4.6 Memory evaluation

Fig. 8. LS subtree: Memory perfor-
mance evaluation.

Memory performance can be quite com-
plex to evaluate. We use MTL to find
the different access patterns and strides
for each memory group (as defined by
the grouping analysis [11]). Memory ac-
cesses typically are more efficient when
targeting contiguous bytes, while dis-
contiguous accesses reduce the spatial
locality of data. The worst case sce-
nario is having large and unpredictable
strides, as hardware prefetchers may not
be able to function properly. MTL also
provides the data reuse distance, allow-
ing the temporal locality evaluation of
groups.

Once potential performance caveats
are identified, we can use DECAN
transformation del-group to single out
offending groups and quantify their con-
tribution to the LS variant global time.



Comparing the bandwidth measured for each group with the bandwidth obtained
in ideal conditions in the bandwidth measurement phase may then provide us
with an upper limit on achievable performance.

4.7 OpenMP evaluation

Fig. 9. OpenMP performance tree:
STD represents the standard devia-
tion between threads while the OVH
branch stands for OpenMP Overhead
evaluation.

Some issues are specific to parallel pro-
grams using OpenMP (Figure 9). The
standard deviation (STD) of the execu-
tion time for each thread points out
workload imbalances. It is particularly
important that no thread takes signif-
icantly longer than others to compute
its working set, as loop barriers may
then highly penalizing stalls. Another
issue is excessive cache coherency traf-
fic generated by store operations on
shared data. Transformation S2L con-
verts all stores to loads: we can quantify
coherency penalties by comparing S2L

with REF. Furthermore, the OpenMP
Overhead (OVH) module of MAQAO
is able to measure the portion of time
spent in OpenMP routines, providing an
OpenMP overhead metric.

5 Experimental results

We applied our methodology on two scientific applications: PN and RTM. The
analysis processes and test results are presented below.

5.1 PN

PN is an OpenMP/MPI kernel used at CEA (French Department of Energy).
Hot loops are memory bound and are ideal to stress tools dedicated to memory
optimizations.

All tests are performed on a two-socket Sandy-Bridge machine, composed of
two Intel E5-2680 processors with 8 physical cores each.

The profiling done on the initial MPI version of the code presents four loops
consuming more than 8% of the global execution time each. Because of a lack
of space, we only study the first one, but the three other loops have a similar
behavior.

According to the methodology, the next step consists in gaining more insight
on the loop characteristics through performance overview, hence, the LS and
DL1 DECAN variants are used. The corresponding results shown in Figure 10



indicate a strong domination of data accesses, with the LS curve being well over
the DL1 curve and matching the REF one. Consequently, the investigation follows
the LS subtree.

Fig. 10. Streams analysis on PN. The REF curve correspond to performance of the
original code. The LS (resp. DL1) curve corresponds to the DECAN variant where all
FP instructions have been suppressed (resp. all data accesses are forced to come out
of L1).

In order to get more information on data accesses, we use MTL. Six instruc-
tion groups are detected but only three of them contain relevant SSE instructions
dealing with FP arrays. Experimental results in Table 4 illustrates MTL output,
which uses i1, i2, and i3 to represent loop indices leading to conclude the consid-
ered piece of code contains at least a triple-nested loop. Table 4 analysis indicate
a simple access pattern for group G1 (stride 1) and, for groups G6 and G5, more
complicated patterns which need to be optimized. As a result, in this step we
are able to characterize our memory accesses with precision. Though, it leaves
us with two accesses and no possibility to know which one is the most impor-
tant. At this point, we return to our notion of ROI provided through Differential
analysis and apply the DECAN del-group transformation for each of the three
selected groups. The del-group results shown in Figure 11 clearly indicate that
G6 is the most costly group by far: it should be our first optimization target.

Table 4. PN MTL results for the three most relevant instruction groups. i1, i2, and i3
represent loop indices.

Group Instructions Pattern

G1 Load (Double) 8*i1

G6 Load (Double) 8*i1+217600*i2+1088*i3

G5 Store (Double) 8*i1+218688*i2+1088*i3



With the finding of the delinquent instruction group, the analysis phase
comes to its end. The next logical step is to try and optimize the targeted
memory access. Fortunately, the information given by MTL reveals an interest-
ing pathology. The access pattern of the instruction of interest has a big stride in
the innermost loop (1088*i3) and a small one in the outermost loop (8*i1). In or-
der to diminish the access penalty we perform loop interchange between the two
loops, which results in a considerable performance gain at the loop level with a
speedup of 7.7x and consequently a speedup of 1.4x on the overall performance
of the application.

Fig. 11. Group cost analysis on PN. Each group curve corresponds to performance of
the loop while the target group is deleted. The original code performance (REF) is
used as reference.

5.2 RTM

Reverse Time Migration (RTM) [18] is a standard algorithm used for geophysical
prospection. The code used in this study is an industrial implementation of the
RTM algorithm by the oil & gas company TOTAL.

Our RTM code operates on a regular 3D grid. More than 90% of the applica-
tion execution time is spent in two functions, Inner and Damping, which execute
similar codes on two different parts of the domain: Inner is devoted to the core
of the domain while Damping is used on the skin of the domain. Standard do-
main decomposition techniques are used to spread the workload on multicore
target machines. Since the grid is uniform, load balancing can be easily tuned
by using rectangular sub-domain decomposition and by properly adjusting the
sub-domain size.

All experiments are done on a single socket machine, which contains a quad-
core Intel Xeon E3-1240 processor with a cache hierarchy of 32KB (L1), 256KB
(L2) and 8MB (shared L3).



Step 1: The original version of the code is provided with a default non-
optimized blocking. The first analysis on the OpenMP subtree reveals an im-
balanced work sharing. A second analysis done at the level of the performance
overview subtree shows that the code is highly bounded by memory operations.
In order to fix this, we focus on the blocking strategy. As a result it turns out
that the default block size is responsible for both the load imbalance between
threads and the bad memory behavior. We can then select a strategy which
provides a good balance at the work sharing level as well as a good trade-off
between the LS and FP streams. However, we note that, to obtain an optimal
strategy, a more dedicated tool should be used.

Step 2: The second step of the analysis consists of going further in the
OpenMP subtree and checking how the RTM code performs in term of coherency.
As explained earlier, the structure of the code induces a non-negligible coherency
traffic. Figure 12 shows experimental results after applying the S2L transforma-
tion on RTM. While the x-axis details loops respectively identified from Inner

and Damping functions, the y-axis represents speedups over the original loops.
The results indicate a negligible gain due to canceling potential coherency mod-
ifiers and a minimal gain, observed on two loops, due to a complete deletion of
the stores. Consequently, we can conclude that maintaining the overall coherency
state remains negligible, therefore, there would be no point in going further in
this direction.

Fig. 12. Evaluation of the cost of cache coherence protocol. The S2L variants show
similar performance as their corresponding reference versions. The NO STORE vari-
ants show similar performances also, except for two loops which present a relatively
non negligible store cost.



6 Related Work

Improving an application’s efficiency requires identifying performance problems
through measurement and analysis but assessing bottlenecks impact on perfor-
mance is much harder. To achieve that, most researchers consider a qualitative
approach. TAU [1] represents a parallel performance system that addresses di-
verse requirements for performance observation and analysis. Although perfor-
mance evaluation issues require robust methodologies and tools, TAU only offers
support to the performance analysis in various ways, including instrumentation,
profiling and trace measurements.

Tools such as Intel VTune [3], GNU profiler (Gprof) [19], Oprofile [20], Mem-
Spy [21], VAMPIR [6], and Scalasca [5] provide considerable insight on the ap-
plication’s profile. In term of methodology Scalasca, for instance, proposes an
incremental performance-analysis procedure that integrates runtime summaries
based on event tracing. While these tools help hardware and software engineers
find performance pathologies, significant manual performance tuning remain for
software improvements, for example, selecting instructions in particular part of
a program.

PerfExpert [2], HPCToolkit [22], and AutoSCOPE [23] pinpoint performance
bottlenecks using performance monitoring events. Furthermore, while PerfEx-
pert suggests performance optimizations, AutoSCOPE extends PerfExpert by
automatically determining appropriate source-code optimizations and compiler
flags. Contrary to PAMDA, the considered tools do not provide a methodology
presenting the cost related to the identified bottleneck. ThreadSpotter also helps
a programmer by presenting a list of high level advice without addressing return
on investment issues: what to do in case of multiple bottlenecks? How much do
bottlenecks cost?

Interestingly in [24, 25], the authors present an automated system that fin-
gerprints the pathological patterns of the hardware performance events and iden-
tifies the pathologies in applications, allowing programmers to reap the architec-
tural insights. The proposed technique is close to the current work and includes
pathology description through microbenchmarks as well as pathology identifi-
cation using a decision tree. However, in order to evaluate usual performance
pathologies, PAMDA additionally integrates pathology cost analysis.

The above survey indicates that performance evaluation requires a robust
methodology, but traditional methods do not help much with coping with the
overall hardware complexity and with guiding the optimization effort. Also, pre-
vious works focus on performance bottleneck identification providing optimiza-
tion advice without providing potential gains. The previous factors motivate
to consider PAMDA as the only methodology combining both qualitative and
quantitative approaches to drive the optimization process.

7 Conclusion and Future Work

Application performance analysis is a constantly evolving art. The rapid changes
in the hardware mixed with new coding paradigms force analysis tools to handle



as many pathologies as possible. This can only be achieved at the expense of
usability. At the end, application developers work with extremely powerful tools
but they have to face significant differences and difficulties to use them.

This paper illustrates the usefulness of performance assessment combining
static analysis, value profiling and dynamic analysis. The proposed tool chain,
PAMDA, helps the user to quickly identify performance pathologies and assess
their cost and impact on the global performance.

The goal in using PAMDA is to make sure that the right effort is spent at
each step of the analysis and on the right part of the code. Furthermore, we try
to create some synergy between different tools by combining them in a unified
environment. We provide some case studies to illustrate the overall analysis
and optimization process. Experimental results clearly demonstrate PAMDA’s
benefits.

Obviously, the provided methodology is far from being finished. Our constant
challenge is to keep improving it as well as working towards full automation. We
also aim to enlarge it for other kind of paradigms through the integration of
analyses provided by complementary tools such as Scalasca, Vampir and TAU.
Additionally, refining optimization investigations is crucial in order to make it
more user-friendly.
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