
Scalable Fast Multipole Method for
Electromagnetic Simulations

Nathalie Möller1�, Eric Petit2, Quentin Carayol1, Quang Dinh1 and William
Jalby3

1 Dassault Aviation, France
{nathalie.moller,quentin.carayol,quang.dinh}@dassault-aviation.com

2 Intel, France
eric.petit@intel.com

3 LI-PaRAD, University of Versailles, France
william.jalby@uvsq.fr

Abstract. To address recent many-core architecture design, HPC ap-
plications are exploring hybrid parallel programming, mixing MPI and
OpenMP. Among them, very few large scale applications in production
today are exploiting asynchronous parallel tasks and asynchronous mul-
tithreaded communications to take full advantage of the available con-
currency, in particular from dynamic load balancing, network, and mem-
ory operations overlapping. In this paper, we present our first results
of ML-FMM algorithm implementation using GASPI asynchronous one-
sided communications to improve code scalability and performance. On
32 nodes, we show an 83.5% reduction on communication costs over the
optimized MPI+OpenMP version.

Keywords: CEM, MLFMM, MPI, PGAS, TASKS

1 Introduction

The stability of the architecture paradigm makes more predictable the required
effort to port large industrial high performance codes from a generation of su-
percomputers to another. However, recent advances in hardware design result in
an increasing number of nodes and an increasing number of cores per node: one
can reasonably foresee thousands of nodes mustering thousands of cores, with a
subsequent decrease of memory per core. This shift from latency oriented design
to throughput oriented design requires application developers to reconsider their
parallel programming usage outside the current landscape of production usage.
Due to the large and complex code base in HPC, this tedious code moderniza-
tion process requires careful investigation. Our objective is to expose efficiently
fundamental properties such as concurrency and locality.

In this case-study, this is achieved thanks to asynchronous communication
and overlapping with computation. We demonstrate our methodology on a Das-
sault Aviation production code for Computational Electromagnetism (CEM)

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_47

https://dx.doi.org/10.1007/978-3-030-22741-8_47


2 Möller et al.

implementing the Multi-Level Fast Multipole Method (ML-FMM) algorithm
presented in section 2. This complex algorithm is already using a hybrid MPI
and OpenMP implementation which provides state of the art performance com-
pared to similar simulations [6], as discussed in related work section 2.2. To
put priorities in the modernization process, we evaluate the potential of our
optimization with simple measurements that can be reproduced on other ap-
plications. This evaluation is presented in section 3. With this algorithm, the
three problems to address are load-balancing, communication scalability, and
overlapping. A key common aspect of these issues is the lack of asynchronism in
all levels of parallelism. In this paper, we will focus on exploring the impact of
off-line load-balancing strategies in section 4 and introducing asynchronism in
communications in section 5.

The result section 6 shows, on 32 nodes, an 83.5% improvement in commu-
nication time over the optimized MPI+OpenMP version. Further optimizations
to explore are discussed in future work. To demonstrate our load balancing and
communications improvement for ML-FMM, we are releasing FMM-lib library [1]
under LGPL-3 license.

2 SPECTRE and MLFMM

SPECTRE is a Dassault Aviation simulation code for electromagnetic, and
acoustic applications. It is intensively used for RCS (Radar Cross-Section) com-
putations, antenna design and external acoustic computations. These problems
can be described using the Maxwell equations. With a Galerkin discretization,
the equations result in a linear system with a dense matrix: the Method of Mo-
ments (MoM). Direct resolution leads to an O(N3) complexity, where N denotes
the number of unknowns. A common approach presented in section 2.1 to solve
larger systems is to use the Multi-Level Fast Multipole Method (MLFMM) to
reduce the complexity to O(NlogN)[10]. In SPECTRE, the MLFMM is imple-
mented with hybrid MPI + OpenMP parallelism. For the time being, all MPI
communications are blocking.

2.1 The FMM algorithm

The FMM (Fast Multipole Method) has been introduced in 1987 by L.Greengard
and V. Rohklin[1] and is part of the 20th century top ten algorithm [5]. The
algorithm relies on the properties of the Green kernel. Let us consider a set of
n points xp and a function f with known values at each of these points. The
Fast Multipole Method (FMM) is an algorithm which allows, for all p ≤ n, fast
computation of the sums :

σ(p) =
∑

q≤n q 6=p

G(xp − xq)f(xq),

where G(.) is the Green kernel. In two dimensions, a naive computation of these
sums would require a large number of operations in O(n2), whereas FMM yields
a result in O(n) operations.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_47

https://dx.doi.org/10.1007/978-3-030-22741-8_47


Scalable Fast Multipole Method for Electromagnetic Simulations 3

The FMM relies on an accurate approximation of the Green kernel, hierar-
chical space decomposition and a criterion of well separation. The rationale is
to model the distant point to point interactions by hierarchically grouping the
points into a single equivalent point. Therefore the FMM relies on the accuracy
of this far-field low-rank approximation. To make the approximation valid, the
group of points has to be far enough from the target point: this is the well-
separated property.

Fig. 1. Near Field and Far Field characterization in 2D.

Figure 1 shows a quadtree covering a two-dimensional space and defining the
near field and the far field of the particles in the green square. The red particles
are well-separated : they form the far field and interactions are computed using
the FMM. The grey particles outside the green square are too close: they form
the near field and interactions are computed using the MoM.

Fig. 2. Left: Hierarchically 3D partitioning, Right: 2D quadtree with FMM operators

As illustrated in figure 2, the 3D computational domain is hierarchically par-
titioned using octrees, and the FMM algorithm is applied using a two-step tree
traversal. The upward pass aggregates children’s contributions into larger parent

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_47

https://dx.doi.org/10.1007/978-3-030-22741-8_47


4 Möller et al.

nodes, starting from the leaf level. The downward pass collects the contributions
from same level source cells, which involves communications, and translates the
values from parents down to children. The operators are commonly called P2M
(Particle to Multipole) and M2M (Multipole to Multipole) for the first phase
and M2L(Multipole to Local), L2L (Local to Local) and L2P (Local to Particle)
for the second one.

Compared to n-body problems, electromagnetic simulation introduces a ma-
jor difference: at each level, the work to compute a multipole is doubling, which
leads the complexity to O(NlogN) instead of O(N). Moreover, FMM is referred
to as MLFMM, for Multi-Level FMM.

2.2 Related Work

Parallel programming and core optimization At node level, [11], Chan-
dramowlishwaran et al. have done extensive work to optimize the computations
with manual SIMD, data layout modifying to be vectorization friendly, replace-
ment of matrix storage by on-the-fly computations, use of FFTs and OpenMP
parallelization. These optimizations have been implemented in the KIFMM code.
In [23], Yokota et al. also achieve parallelisation through OpenMP and vectoriza-
tion with inline assembly. In [18] and [16], they discuss data driven asynchronous
versions using both tasks, at node level with Quark, and on distributed systems
with TBB and sender-initiated communications using Charm++. Milthorpe et
al. use the X10 programming language [19] which supports two levels of par-
allelism: a partitioned global address space for communications and a dynamic
tasks scheduler with work stealing. In [8] and [9], Agullo et al. automatically gen-
erate a directed acyclic graph and schedule the kernels with StarPU within a node
that may expose heterogeneous architectures. Despite being impressive demon-
strators opening a lot of opportunities, to our best knowledge, none of these
codes has been integrated with all their refinements in large production codes
to solve industrial use-cases. Furthermore, they require adaptation to match the
specific properties of electromagnetic simulation with doubling complexity at
each level of the tree.

Load Balancing and communication pattern In the literature [16], two
main methods are identified for fast N-Body partitioning, and can be classified
into Orthogonal Recursive Bisection (ORB) or Hashed Octrees (HOT). ORB
partitioning consists in recursively cutting the domain into two sub-domains.
This method creates a well-balanced binary tree, but is limited to power of two
numbers of processors. Hashed octrees partition the domain with space-filling
curves. The most known are Morton and Hilbert. Efficient implementation relies
on hashing functions and are, therefore, limited to 10 levels depth with 32 bits
or 21 levels with 64 bits.

In [17], Lakshuk et al. propose to load balance the computational work with
a weighted Morton curve. Weights, based on the interaction lists, are computed
and assigned to each leaf. In a similar approach, Milthorpe et al. [19] propose a

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_47

https://dx.doi.org/10.1007/978-3-030-22741-8_47


Scalable Fast Multipole Method for Electromagnetic Simulations 5

formula to evaluate at runtime the computational work of the two main kernels:
P2P and M2L. Nevertheless current global approaches on space filling curve do
not consider the communication costs.

A composite approach is proposed by Yokota et al. [16]. They use a modified
ORB (Orthogonal Recursive Bisection) method, combined with a local Morton
key so that the bisections align with the tree structure. For the local Morton key,
particles are weighted considering computation and communication using ad-hoc
formula. This is complemented by another work of the same author in [24] and
[15] about FMM communication complexity. However, their model cannot be
generalized to our use-cases.

In [12], Cruz et al. elaborate a graph-based approach to load balance the
work between the nodes while minimizing the total amount of communica-
tions. They use vertices’ weights proportional to the computational work and
edges proportional to communications’ volume. They compute the partition us-
ing PARMETIS [3] . First result demonstrate interesting strong scaling results
on small clusters.

3 Profiling

The FMM’s behavior has been examined in terms of execution time, scalability,
communications, load-balance, and data locality. To this end, two test cases
have been used, as well as different profiling tools like ScoreP [4] and Maqao
[2]. The test cases are a generic metallic UAV (Unmanned Aerial Vehicle) [7],
with 95 524 nodes, 193 356 elements and 290 034 dofs, and a Dassault Aviation
Falcon F7X airplane with 765 187 nodes, 1 530 330 elements and 2 295 495 dofs.
All experiments, for profiling or results, are run on a Dassault Aviation cluster,
composed by 32 nodes of two Intel Sandy Bridge E5-2670 (8 cores@2.60GHz)
interconnected with InfiniBand FDR. Binaries are compiled with Intel 2015 and
run with bullxmpi-1.2.9.1.

Fig. 3. Internode and intranode strong scaling analysis on UAV

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_47

https://dx.doi.org/10.1007/978-3-030-22741-8_47


6 Möller et al.

Scalability In the FMM algorithm, a common difficulty is the scalability of the
distributed memory, due to the large number of communications required. There-
fore, we are interested in separating communication and computational costs. In
order to evaluate the potential gain by overlapping the communications with
computations without other changes in the algorithm, we create and measure
an artificial communication-free Total FMM Comm Free version of the code. Of
course this code does not converge numerically anymore, but the performance
of a significant number of iteration can be compared with the same number of
original iterations. In the current implementation, the communications consist
in exchanging the vector of unknowns and far-field contributions before and af-
ter the FMM tree traversal. Unknowns are exchanged via MPI broadcast and
allreduce communications, while far fields are sent via MPI two-sided point to
point communications and one allreduce at the top of the tree. The left part of
figure 3 shows the strong scaling analysis. We use 4 nodes, and according to the
best performing execution mode of SPECTRE/MLFMM, we launch one MPI
process per socket with 8 OpenMP threads. Communications are not scaling:
with 8 processes, the gap (log scale) between the Total FMM and Total FMM
comm-free represents 35%. Further experiments with the larger F7X test case,
run on 32 nodes, with one MPI process per node, show that the time spent in
the communications grows considerably and reaches 59%. The right part of fig-
ure 3 focuses on intranode scalability. It highlights the lack of shared memory
parallelism: over eight threads, parallel efficiency falls under 56%. In its current
status, this last measurement prevents efficient usage of current manycore archi-
tectures and is a risk, for the future increase in the number of cores, which must
be addressed.

Data Locality Figure 4 shows the communication matrix of the original appli-
cation, which reflects the quantity of data exchanged. A gradient from blue to
red towards the diagonal would represent a good locality pattern. Despite com-
munications being more important around the diagonal, vertical and horizontal
lines are noticeable in the right and the bottom part of the matrix. They denote
a set of processors having intensive communication with almost all the others,
resulting in large connection overhead and imbalance in communication costs.
Measurements with the Maqao tool expose a load balance issue between threads
within an MPI worker, and between MPI workers, with respective 17% and 37%
idle/waiting time.

4 Load Balancing

In the FMM algorithm, load-balancing consists in evenly distributing the parti-
cles among the processes, while minimizing and balancing the size and number
of communications of the far-fields. There is no general and optimal solution to
this problem. Each application of the FMM algorithm and more specifically each
use case, may benefit from different strategies. In the case of CEM for structures,
the particles are Gauss points that are not moving, and therefore one can pay

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_47

https://dx.doi.org/10.1007/978-3-030-22741-8_47


Scalable Fast Multipole Method for Electromagnetic Simulations 7

Fig. 4. Communication matrix, UAV test case

for off-line elaborated approaches. In our library, we propose two load balanc-
ing strategies using Morton space-filling curves and Histograms. Both methods
compute separators matching the underlying octree grid. Having the separator
frontier aligned on the regular octree is of prime importance for the cutoff dis-
tance test computation in the remaining of the FMM algorithm. The Morton
version relies on a depth-first traversal, and isn’t limited by any depth, and the
Histogram version is an ameliorated ORB with multi-sections. Our implementa-
tions are generic and freely available under LGPLv3.0 [1].

4.1 SPECTRE’s Load Balancing

In the initial version of SPECTRE, the load balancing relies on distributing an
array of leaves among the processors. The array is sorted in a breadth-first way.
Thus, this method results in being equivalent to a Morton ordering.

Fig. 5. Morton tree traversal

As shown in figure 5, drawing a Morton curve on the quadtree grid repre-
sented on the left side corresponds to picking the cells in ascending order, i.e. a
depth-first tree traversal. While considering only leaves, breadth-first traversal
results in the same ordering.

4.2 Morton

The study of the existing load balancing scheme implemented in SPECTRE has
left little room for improvement using the Morton load balancing strategy. Nev-
ertheless, Morton ordering benefits of good locality in the lower levels, but on the

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_47

https://dx.doi.org/10.1007/978-3-030-22741-8_47


8 Möller et al.

highest level, the first cut can cause spatial discontinuities and therefore generate
communications. In order to observe the results obtained with the different load
balancing strategies, an interactive visualization tool, based on OpenGL, has
been developed to produce the views. In figure 6, each process displays its own
scene: the vertical plane cuts the UAV in several pieces, generating neighboring
and communications.

Fig. 6. UAV cut into discontiguous pieces with Morton ordering

Our implementation of Morton ordering uses a depth-first traversal on the
underlying regular octree taking into account the number of elements present
in each node. To avoid over-decomposition, a tolerance threshold has been in-
troduced to tune the load balancing precision. While the depth-first traversal
algorithm progresses down the octree, nodes become smaller, and the load bal-
ancing precision improves. The algorithm stops as soon as a separator meeting
the precision threshold is computed.

In 3D, rotating the axis order results in eight different possibilities, which
we have implemented and tested. Figure 7 shows the communication matrices
obtained for each case. One can see that the most interesting communication
matrices result from Z-axis first orderings. However, from 1 to 64 processes with
our previous experimental setup, Morton ZYX ordering, obtains a limited 5% to
10% performance improvement compared with the original ordering.

4.3 Histograms (Multisection Kd-tree)

Multi-sections allow to overpass the ORB limit of power of two numbers of
processors: the targeted number of domains is decomposed into prime numbers
and the multi-sections are computed with global histograms. This is a costly and
complex algorithm. This method, also referred as implicit kd-tree, has already
been explored in other domains such as ray tracing [13]:

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_47

https://dx.doi.org/10.1007/978-3-030-22741-8_47


Scalable Fast Multipole Method for Electromagnetic Simulations 9

Fig. 7. Axis order influence on communication matrices. First column: X-axis first:
XYZ and XZY - Second column: Y-axis first: YXZ and YZX, - Third column: Z-axis
first : ZXY and ZYX.

We developed two scalable distributed parallel versions: the first one is a com-
plete computation of the multi-sections leading to an exact distribution, and the
second one is an approximation where the separator is rounded to match the oc-
tree grid. The second method is less accurate, but requires less computation and
communication. Our implementation is fully distributed. It can handle very large
inputs, which do not fit in a single node, by managing the particle exchanges,
to produce the final sorted set.

Fig. 8. Left : OpenGL visualization of histogram load balancing, UAV, 8 domains -
Right: Communication matrix on UAV with 64 domains

Left part of figure 8 shows the UAV distributed among eight processes with
red points representing the neighboring cells. One can see that they represent a
large part of the points and come from the vertical cut along the Z-axis. The right

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_47

https://dx.doi.org/10.1007/978-3-030-22741-8_47


10 Möller et al.

part of figure 8 shows the resulting communication matrix with 64 processes: the
communication locality has been worsened, resulting in an execution time 1.7
times longer than the original version.

In electromagnetic simulations, another commonly used load balancing method
consists in cutting the airplane in slices along its length [22]. The histogram al-
gorithm allows to easily test this method by realizing all the cuts along only one
axis, but the experiments did not show any improvement.

4.4 Load balancing future work

Load balancing the work is critical between and inside the nodes. For the work
distribution among the computation nodes, we tested different classical methods
without achieving any significant performance improvement. Further investiga-
tion is required. A good distribution should balance the work but also mini-
mize the neighboring. Nonetheless, a blocking bulk-synchronous communication
model induces many barriers, which could tear down any load balancing effort.
Therefore, introducing asynchronism, overlapping, and fine grain task parallelism
inside the nodes may influence our conclusion and must be fixed before exploring
new load-balancing strategies.

5 Communications

The FMM’s communications consist of two-sided point to point exchanges of far-
field terms. In the current version, all communications are executed at the top
of the octree when the upward pass is completed. The highest level of the tree
is exchanged via a blocking MPI Allreduce call. The other level communications
are executed with blocking MPI Send, MPI Recv or MPI Sendrecv. They are
ordered and organized in rounds. At each round, pair of processes communicate
and accumulate the received data into their far-field array. The computation
continues only once the communication phase is completed.

We aim at proposing a completely asynchronous and multithreaded version of
these exchanges. Efficient asynchronous communications consist in sending the
available data as soon as possible and receiving it as late as possible. Messages
are sent at the end of each level, during the upward pass, instead of waiting
to reach the top of the tree. In the same way, receptions are handled at the
beginning of each level during the downward pass. We have developed different
versions based on non-blocking MPI and one-sided GASPI, a PGAS programing
model [21]. Our early results have been presented in [20].

PGAS (Partitioned Global Address Space) is a programming model based
on a global memory address space partitioned among the distributed processes.
Each process owns a local part and directly accesses to the remote parts both in
read and write modes. Communications are one-sided: the remote process does
not participate. Data movement, memory duplications and synchronizations are
reduced. Moreover, PGAS languages are well suited to clusters exploiting RDMA

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_47

https://dx.doi.org/10.1007/978-3-030-22741-8_47


Scalable Fast Multipole Method for Electromagnetic Simulations 11

(Remote Direct Memory Access) and letting the network controllers handle the
communications. We use GPI, an implementation of the GASPI API [21].

The FMM-lib library entirely handles the GASPI communications outside
the Fortran original code. At the initialization step, the GASPI segments are
created. All necessary information to handle the communications needs to be
precomputed. Indeed, when a FMM level is locally terminated, the corresponding
process sends the available information by writing remotely into the recipient’s
memory at a pre-computed offset without requiring action from the the recipient.
This write is followed by a notification containing a notifyID and a notifyValue
which are used to indicate which data has been received. When the recipient
needs information to pursue its computation, it checks for notifications and waits
only if necessary.

A similar pattern can be built using the MPI 2-sided non-blocking commu-
nications via MPI Isend and MPI Irecv. These calls return immediately, and
let the communication complete while the computation pursues. However, the
lack of communication progression is a well-known problem. Some methods, like
manual progression, help to force the completion. It consists in calling MPI Test
on the communication corresponding MPI Request. The MPI standard ensures
that the MPI Test calls trigger the communications [14].

6 Communication results

We use the generic metallic UAV, place one MPI/GASPI process per node, and
increase the number of nodes from 1 to 32. Each node is fully used with 16
OpenMP threads.

Fig. 9. Far fields communication time

Figure 9 shows the execution time of the different MPI and GASPI versions.
We compare four different versions: Ref, MPI Async, Gaspi Bulk, and Gaspi

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_47

https://dx.doi.org/10.1007/978-3-030-22741-8_47


12 Möller et al.

Async. The first three ones handle all the exchanges at the top of the tree. The
idea is to measure the improvement, without any algorithmic modification. Ref
uses blocking MPI calls, MPI Async uses non-blocking MPI calls and manual
progression, and Gaspi Bulk uses one-sided GASPI writes. The Gaspi Async
version sends data as soon a level is complete, receives as late as possible, and
relies on hardware progression. One can see that, without introducing any over-
lapping, on 32 nodes, the Gaspi Bulk version already reaches 46% speedup over
Ref. MPI Async version achieves 36% speedup, but still remains slower than the
synchronous Gaspi Bulk version. Finally, introducing overlapping enables the
Gaspi Async version to gain three more percentage points over the Ref version,
with a total of 49% speedup on communications.

Fig. 10. Far fields communication time, after eliminating the Allreduce.

The allreduce at the top of the tree is very sparse. Therefore, we tried to
replace it by more efficient point to point exchanges. Figure 10 shows the results
on the larger F7X test case. The graph presents five versions: the reference, and
all four precedent versions modified by suppressing the allreduce. All GASPI
versions take more benefit more from this modification than the MPI ones.
Gaspi Async reaches 83.5% speedup on communication over Ref, resulting in
29% speedup for the complete FMM algorithm.

7 Conclusion and Future Work

In this paper, we are investigating methodologies to introduce load balancing
and asynchronous communications, in a large industrial Fortran MLFMM ap-
plication. Applying the different load balancing strategies has demonstrated that
it is possible to improve the communication pattern, but it would require more
refined options in the future work to further improve the solution. Furthermore,

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_47

https://dx.doi.org/10.1007/978-3-030-22741-8_47


Scalable Fast Multipole Method for Electromagnetic Simulations 13

since our load balancing may be harmed by the bulk synchronous communication
scheme, based on blocking MPI communications, we prioritized the implementa-
tion of a fully asynchronous communication model. We are exploring the use of
non-blocking MPI and multithreaded asynchronous one-sided GASPI, and have
already obtained a significant 83.5% speedup.

At the present time, we are working on optimizing the intranode scalabil-
ity introducing fine grain parallelism with the use of tasks. The next step is
to make the algorithm fully asynchronous to expose the maximum parallelism:
all the barriers between levels will be broken into fine grain task dependencies
management.

Acknowledgements The optimized SPECTRE application described in this
article is the sole property of Dassault Aviation.

References

1. Fmm-lib. https://github.com/EXAPARS/FMM-lib.
2. Maqao. https://www.maqao.org.
3. Parmetis. http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.
4. Score-p. https://www.vi-hps.org/projects/score-p/.
5. Top 10 algorithm. https://archive.siam.org/pdf/news/637.pdf.
6. Workshop-em-isae. https://websites.isae-supaero.fr/workshop-em-isae-

2018/workshop-em-isae-2018.
7. Workshop-em-isae. https://websites.isae-supaero.fr/workshop-em-isae-

2016/accueil.
8. E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, and T. Takahashi. Task-

based FMM for multicore architectures. Technical Report RR-8277, INRIA, Mar.
2013.

9. E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, and T. Takahashi. Task-
based FMM for heterogeneous architectures. Research Report RR-8513, Inria, Apr.
2014.

10. Q. Carayol. Development and analysis of a multilevel multipole method for electro-
magnetics. PhD thesis, Paris 6, 2002.

11. A. Chandramowlishwaran, K. Madduri, and R. Vuduc. Diagnosis, tuning, and
redesign for multicore performance: A case study of the fast multipole method.
In Proceedings of the 2010 ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’10, pages 1–12, Wash-
ington, DC, USA, 2010. IEEE Computer Society.

12. F. A. Cruz, M. G. Knepley, and L. A. Barba. Petfmm–a dynamically load-balancing
parallel fast multipole library. CoRR, abs/0905.2637, 2009.

13. M. Groß, C. Lojewski, M. Bertram, and H. Hagen. Fast implicit kd-trees: Ac-
celerated isosurface ray tracing and maximum intensity projection for large scalar
fields. In Proceedings of the Ninth IASTED International Conference on Computer
Graphics and Imaging, CGIM ’07, pages 67–74, Anaheim, CA, USA, 2007. ACTA
Press.

14. T. Hoefler and A. Lumsdaine. Message Progression in Parallel Computing - To
Thread or not to Thread? IEEE Computer Society, Oct. 2008.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_47

https://dx.doi.org/10.1007/978-3-030-22741-8_47


14 Möller et al.

15. H. Ibeid, R. Yokota, and D. Keyes. A performance model for the communication
in fast multipole methods on HPC platforms. CoRR, abs/1405.6362, 2014.

16. M. A. Jabbar, R. Yokota, and D. Keyes. Asynchronous execution of the fast
multipole method using charm++. CoRR, abs/1405.7487, 2014.

17. I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen, R. Sampath,
A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros. A massively parallel
adaptive fast-multipole method on heterogeneous architectures. In Proceedings of
the Conference on High Performance Computing Networking, Storage and Analy-
sis, SC ’09, pages 58:1–58:12, New York, NY, USA, 2009. ACM.

18. H. Ltaief and R. Yokota. Data-driven execution of fast multipole methods. CoRR,
abs/1203.0889, 2012.

19. J. Milthorpe, A. P. Rendell, and T. Huber. Pgas-fmm: Implementing a distributed
fast multipole method using the x10 programming language. CCPE, 26(3):712–727,
2014.

20. N. Moller, E. Petit, Q. Carayol, Q. Dinh, and W. Jalby. Asynchronous One-
Sided Communications for Scalable Fast Multipole Method in Electromagnetic
Simulations, Aug. 2017. Short Paper presented at COLOC workshop, Euro-Par
2017, Santiago de Compostela, August 29, 2017.

21. C. Simmendinger, J. Jägersküpper, R. Machado, and C. Lojewski. A pgas-based
implementation for the unstructured cfd solver tau. PGAS11, USA, 2011.

22. G. Sylvand. La méthode multipôle rapide en électromagnétisme. Performances,
parallélisation, applications. Theses, Ecole des Ponts ParisTech, June 2002.

23. R. Yokota and L. A. Barba. A tuned and scalable fast multipole method as a
preeminent algorithm for exascale systems. CoRR, abs/1106.2176, 2011.

24. R. Yokota, G. Turkiyyah, and D. Keyes. Communication complexity of the fast
multipole method and its algebraic variants. CoRR, abs/1406.1974, 2014.

ICCS Camera Ready Version 2019
To cite this paper please use the final published version:

DOI: 10.1007/978-3-030-22741-8_47

https://dx.doi.org/10.1007/978-3-030-22741-8_47

