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Introduction
Context

 Deal with HPC applications

BEFORE AFTER

Shift around 2005

1 core at high frequency Multiple cores at lower frequency

 Running on a cluster
 Bigest: 16 Petaflops

 16 000 000 000 000 000 flops


 Composed of multicore machines
CEA Curie 1.3 Petaflops
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Introduction
Leveraging parallelism

 Huge issue: exploiting parallelism

Frequency Increase Era Multi/Many-core Era

+Ghz

Growing discrepancy

Pe
rf
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m
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ce

Time

2005 2012+
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Introduction
Future trends

 Performance will continue increasing
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Performance Analysis
What is it ?

 Understand the performance of an application
 How well it behaves on a given machine

 What are the issues ?

 Generally a multifaceted problem
 Maximizing the number of views = better understand

 Use techniques and tools to understand

 Once understood       Optimize application
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Performance Analysis
Why is it complex ? (1/4)

 Modern machines are very complex:
 Complex architectures: not easy to fully exploit
 Access to memory = huge impact: the memory wall

The memory wall
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The memory wall
 A variable cost  to access data

CPU
Registers

Main
Memory

Level 1
Cache

Level 2
Cache … Level n

Cache
Disk

Storage

CPU Registers

L1 Instruction Cache L1 Data Cache

L2 Unified Cache

L3 Shared Cache

Main memory Remote memory

Performance Analysis
Why is it complex ? (2/4)

 To avoid memory cost: caches
 Issues related to caches:

 Structure
 Addressing: hit / miss
 Data coherency
 Data locality

9/58



Andrés S CHARIF-RUBIAL Ph.D. Defense - 22 October 2012

NUMA

 More complex mechanism for LLC (NUCA)
 Remote memory location: NUMA

NUCA

Performance Analysis
Why is it complex ? (3/4)

The memory wall

L3 Shared Cache
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Performance Analysis
Why is it complex ? (4/4)

 Performance issues can occur at multiple levels:
 Source | Compiler (Binary) | RT | OS | Hardware

 Too much is expected from the compiler
 ”Usual” compilers: lack of a dynamic model

 Multiple parallel programming paradigms exist
 Tools must take it into account
 Generally we need multiple tools
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 Modeling:
 + Fast
 - Low precision

 Measurement : 
 Tracing: precise behavior       Precise but slow
 Sampling: rate or count          Fast but less precise
 Profiling: agregated statistics      tracing, sampling

 Simulation: 
 + Precise
 - Very slow

Performance Analysis
Multiple analysis approaches
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Performance Analysis
Existing tools
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Performance Analysis
Target? Contributions

 Current tools not sufficient to fix memory issues
 Need a precise memory behavior characterization

 Focus on one machine node 
 Shared memory model: OpenMP

 Helpfull analyses for users:
 Provide usefull and understandable feedback
 That correlates issues to source code

 Binary level: instrument OpenMP programs
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Instrumentation Language
Related work

Dynsinst PIN PEBIL
Language type API Oriented / DSL API Oriented API Oriented

Instrumentation type Static/Dynamic binary Dynamic binary Static binary

Overhead High/High High Low

Robust Yes Yes No

 Current state of the art: 
 Dyninst appears as the most complete
 Not sufficient
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 A domain specific language to easily build tools
 Fast prototyping of evaluation tools

 Easy to use      easy to express       productivity
 Focus on what (research) and not how (technical)

 Coupling static and dynamic analyses 
 Static binary instrumentation

 Efficient: lowest overhead
 Robust: ensure the program semantics
 Accurate: correctly identify program structure

 Drive binary manipulation layer of MAQAO tool

Instrumentation language
Why? Yet another language ?
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Instrumentation Language
What is binary instrumentation ?

 Inserting probes at specific points
 Example: before a call site

 Using instruction or basic bloc relocation

Exit

Entry

Block1 Block3

Block2

mov %edi,%r13d

mov %rsi,%r14

sar       $0x3,%rbp

mov %rdx,%r15

callq 400f08 <Callee>

Content of basic block 3

Assembly instructions

Probecallq 400fa8 <UserFn>

callq 400fa8 <UserFn>

callq 400f08 <Callee>

jmp next instruction 

End of binary

Relocation
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Method 1: using trampolines Method 2: function relocation

Cannot deal with 1-Byte basic blocks Cannot handle pointer (indirect branches)
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 Problem: instrumenting small basic blocks

Instrumentation Language
Advanced static analysis

Exit

Entry

Block1

Function DoExec

Exit

Entry

Block1

Function DoExec

Probe

Probe

Exit

Entry

Block1

Exit

Entry

Block1

Probe

Function DoExec Function DoExec

Probe
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 Problem: instrumenting 1-Byte blocks

 Exemple: dc.A (NPB-OMP) => 8x improvement 

Method 1: only OS signal handlers Our method: use predecessors (CFG)

Huge overhead Minimizes/Removes OS Signal execution

Instrumentation Language
Advanced static analysis

Exit

Entry

Block1

Function DoExec

Probe

Block3

Block2

OS Signal
Exit

Entry

Block1

Probe

Block3

Block2

OS Signal

Function DoExec

Probe Exit
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 Resolve indirect jumps: locate hidden exits

 Introduced conditional probes
 Using ranges (function start/stop)
 If so: insert exit probe(s)

Instrumentation Language
Advanced static analysis

…

mov %rdx,%r15

mov %edi,%r13d

mov %rsi,%r14

sar       $0x3,%rbp

jmpq * %r14

…

Jmpq* 

sar

mov

Conditional
Exit probe

Jmpq* 

sar

mov

Exit Probe

%r14< F.Start or %r14 > F.Stop

else if
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 Handling interleaved functions
 Required for OpenMP codes

 Example: bt.A (NPB-OMP)

 Solution: 
 Detect connected components 

(static analysis)

 Try to detect inlining:
 Heuristic: callsite + debug info 
 Works most of the time

Instrumentation Language
Advanced static analysis
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Instrumentation File

Binaries | Passes | Properties| Global variables | Probes | Events | Filters |Actions |Runtime code
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Instrumentation Language interpreter
Based on Lua language

Modified binary(ies)/library(ies)

Instrumentation Language
Overview
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 Events: Where ?

Instrumentation Language
Language concepts/features

Level Events
Program Entry / Exit (avoid LD + exit handlers)
Function Entries / Exits
Loop Entries / Exits / Backedges
Block Entry / Exit
Instruction Before / After
Callsite Before / After
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 Probes: What ?
 External functions

 Name
 Library
 Parameters: int,string,macros,function (staticdynamic)
 Return value
 Demangling
 Context  saving

 ASM inline: gcc-like

 Runtime embedded code (lua code within MIL file)

_ZN3MPI4CommC2Ev
MPI::Comm::Comm()

Instrumentation Language
Language concepts/features
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 Filters:

 Why ? Reduce instrumentation probes
 Target what really matters

 Lists: regular expressions
 White list 
 Black list

 Built-in: structural properties attributes 
 Example: nesting level for a loop

 User defined: an action that returns true/false

Instrumentation Language
Language concepts/features
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 Actions:

 Why ? For complex instrumentation queries

 Scripting ability (Lua code)

 User-defined functions

 Access to MAQAO Plugins API (existing modules)

Instrumentation Language
Language concepts/features
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 Passes: 

 To address complex multistep instrumentations

 Example: detect OpenMP events

 Step 1: static analysis to detect sequences of call sites
 Only events and actions are used

 Step 2: instrument
 Select (same or new) events and insert probes based on step 1

Instrumentation Language
Language concepts/features
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Ex: TAU Profiler
run_dir = "/PATH_TO_OUTPUT_FOLDER/",
at_exit = {{ name = "tau_dyninst_cleanup " , lib = " libTau.so " }},
main_bin = {
path= "/PATH_TO_main_binary",
output_suffix = "_i",
envvars="LD_LIBRARY_PATH=/PATH_TO_tau_library/",
functions={{

entries = {{
at_program_entry = {{

name = "trace_register_func",  lib = "libTau.so",
params = {

{type = "macro",value = "fct_info_summary"},
{type = "macro",value = "profiler_id"},

}
}},
name = "traceEntry", lib = "libTau.so",
params = { {type = "macro",value = "profiler_id"} }

}},
exits = {{

name = "traceExit",  lib = "libTau.so",
params = { {type = "macro",value = "profiler_id"} }

}}
}}

};

Events

Probes

Configuration

Instrumentation Language
What does it look like ?
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 Integrated into TAU toolkit (previous example)
 tau_rewrite
 More expressive:

 MIL: 20 lines
 Dyninst: 200 lines

 Ongoing integration with Score-P (H4H project)

Instrumentation Language
Collaborations
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 Using TAU profiler
 NPB-OMP: 12 threads
 More robust: all
 Faster: up to 8x
 JIT version (MILRT) 

remains affordable

Instrumentation Language
Comparing MIL and Dyninst overhead using TAU

1-Byte basic block problem

trampoline mechanism
overhead

8x

4.5x

8x
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Instrumentation Language
Comparing MIL and Dyninst overhead using TAU

Accuracy of results: output of thread1 for bt.A
MIL

Dyninst
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Memory behavior characterization
Overview

 Target: memory bounded applications

 Focus on OpenMP (2.5) applications 

 A loop centric approach

 Tracing = 2 major challenges:
 Storing all the memory addresses
 Time to gather the trace

 Analyze the traces: 
 Single threaded: access patterns
 Multi threaded: understanding interactions between threads
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 Targets memory instructions: loads, stores

 Per thread – Per instruction

 Trace collection: memory trace library (MTL)
 Based on NLR algorithm (Ketterlin & Clauss)
 Handles multi-threaded applications
 Added simplified timestamps (cannot compress all timestamps)

 Simplified timestamps:
 MIN-MAX intervals
 Explicit synchronization: OpenMP = #OMP_BARRIER

Memory behavior characterization
Storing all the memory addresses
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Memory behavior characterization
Compressing address references

for (int n=0; n<M; n++) 
if (lambdax[n] > 0.)

for (int i=0; i<NCz; i++)
for (int j=1; j<NCx; j++)

J_upx[IDX3C(n,j,M,i,(NCx+1)*M)] = …

for i0 = 0 to 49
for i1 = 0 to 63

for i2 = 0 to 149
for i3 = 0 to 198

val 0x7f00bd1f0690 + 8*i1 + 217600*i2 + 1088*i3

Source code Trace for store instruction

 Polytope model:
 Compression: regular accesses are stored as loops

 Do not represent source loop but spatial locality

 Each level in: a different offset based on the same start address

 Strides can be easily derived:
 For each level: stride = offset / sizeof(instruction)

 Each instruction can have multiple polytopes (regularity)

Start address
Offset
Level in
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 Naive method: 
 instrument all memory accesses

 Enhanced method: prior static analysis
 Find loop invariants and inductions 
 Instrument invariants 
 Ignore memory accesses based on them (derived)
 Instrument naively all the others
 Reconstruct address flows

Memory behavior characterization
Instrumentation time
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Memory behavior characterization
Comparing Naive and Enhanced methods

Benchmark Naive Overhead Enhanced Overhead Improvement

SOMP 312.swim_m 273x 0.04x 6825x

SOMP 314.mgrid_m 974x 8.36x 116.5x

NAS PB ft.B 2160x 349x 6x

 Dramatically improves performance in some cases

 Lowers, but cannot do much with irregular codes

Comparing instrumentation overheads

38/58



Andrés S CHARIF-RUBIAL Ph.D. Defense - 22 October 2012

 Single threaded aspects
 Transformation opportunities, e.g.: loop interchange
 Data reshaping opportunities , e.g.: array splitting
 Detect alignment issues

 Understanding interactions between threads :
 Load balancing 
 Reuse / False sharing
 Thread affinity

Memory behavior characterization
Exploiting the memory traces
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Memory behavior characterization
Single threaded aspects: Inefficient patterns

Real code example: PNBENCH

Function Loop (MAQAO id) % of Wall time

flux_numerique_z
193

18
195

flux_numerique_x 204
17

206

 Application from CEA
 Parallel programming model: MPI
 Profiling with MAQAO tool provides hotspots: 

 These loops where characterized as memory bounded
 Need a precise memory behavior characterization
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Memory behavior characterization
Single threaded aspects: Inefficient patterns

Load (Double) - Pattern: 8*i1 (Hits : 100% | Count : 1)
Load (Double) - Pattern: 8*i1+217600*i2+1088*i3 (Hits : 100% | Count : 1)
Store (Double)- Pattern: 8*i1+218688*i2+1088*i3 (Hits : 100% | Count : 1)

for (int n=0; n<M; n++) 
if (lambdaz[n] > 0.) {
for (int j=0; j<mesh.NCx; j++) 

for (int i=1; i<mesh.NCz; i++) 
J_upz[IDX3C(n,i,M,j,(mesh.NCz+1)*M)] = Jz[IDX3C(n,i-

1,M,j,(mesh.NCz)*M)] * lambdaz[n];
}
if (lambdaz[n] < 0.){

 Stride 1 (8/8) one access for outmost
 Poor access patterns for two instructions
 Idealy: smallest stides inside to outside
 Here: interchange n and i loops

MTL output

Real code example: PNBENCH
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Memory behavior characterization
Single threaded aspects: Inefficient patterns

Real code example: PNBENCH

for (int n=0; n<M; n++) {
if (lambdaz[n] > 0.){
for (int j=0; j<NCx; j++)

for (int i=1; i<NCz; i++) 
// loop 193

J_upz[IDX3C(n,i,M,j,(NCz+1)*M)]= 
Jz[IDX3C(n,i-1,M,j,(NCz)*M)] * 
lambdaz[n];

}
if (lambdaz[n] < 0.)

…//loop 195
}

for (int j=0; j<NCx; j++)
for (int n=0; n<M; n++) {
if (lambdax[n] > 0.){
for (int i=1; i<NCz; i++) 

// loop 193

J_upz[IDX3C(n,i,M,j,(NCz+1)*M)]= 
Jz[IDX3C(n,i-1,M,j,(NCz)*M)] * 
lambdaz[n];

}
if (lambdaz[n] < 0.)

…//loop 195
}

Original After transformation

7.7x local speedup (loops)   1.4x GLOBAL speedup

 Example: flux_numerique_z, loop 193 (same for 195)
 Same kind of optimization for loops 204 and 206
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 Instructions in original code not aligned: 
 Padding if complex structure
 Compiler flags, pragmas to align (e.g.: vectors)
 Allocate aligned memory: use posix_memalign()

 Architecture issue: even if aligned 
 Up to 10 cycles penalty
 Micro benchmarking on each new machine
 Warn user about values (alignment) to avoid

Memory behavior characterization
Single threaded aspects: data alignment
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 Using all the available theads is not always the 
best choice
 Find out the best thread number

Memory behavior characterization
Understanding interactions between threads

Benchmark
Reference Best

Gain
WTime (s) Threads WTime (s) Threads

NPB CG.A 0.62 96 0.42 36 32%

NPB FT.A 2.29 96 1.47 48 35%

SOMP 320.mgrid_m R 111.14 40 84.71 32 24%

SOMP 312.swim_m R 122.63 40 79.22 32 35%

Motivating example
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Load balancing

Memory behavior characterization
Understanding interactions between threads

CG (left) and FT (right) NAS  Parallel benchmark running  on 96 Threads

%
 m

em
or

y 
ac

ce
ss

es

 Best execution time: 36 | 48 threads with a compact affinity.

 Not sufficient to understand

Threads

45/58



Andrés S CHARIF-RUBIAL Ph.D. Defense - 22 October 2012

Data sharing

Memory behavior characterization
Understanding interactions between threads

LU decomposition application 
(OpenMP) on a 96 cores machine 
(4 nodes – 16 sockets)

Evaluates data sharing between  
Nodes/Sockets : 

• Working set (shared/not shared) 

• Coherence based on shared 
cache lines (worst case)

Load/Load Load/Store

Store/Store Working set
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 Rearranging threads: different pinning (affinity)
 Automatically : find and swap candidates
 Let user choose

 Reduce the number of thread
 Shared resources saturation
 Lack of parallelism (communication waste)

 Predict behavior on next generation architectures
 Add architecture definitions
 Generate corresponding trace on existing architectures

Memory behavior characterization
Understanding interactions between threads

Data sharing
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 OpenMP runtime parameters
 Available metrics not sufficient to predict the correct number of threads

 Suspect resource saturation issue when using all the available threads

 Affinity proposed by Intel runtime provides close to best results

 Symmetrical nature of OpenMP codes is an issue

 Reuse / False Sharing
 Benchmarks does not exhibit significant issues due to false sharing

 Maybe more in real applications

Memory behavior characterization
Understanding interactions between threads

Results
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 Binary level : what is really executed

 Loop-centric approach

 Correlate binary to source code

 Coupling static and dynamic analyses

 Produce user-understandable reports 

 Iterative approach

 Extensible through a scripting interface

MAQAO Tool
Overview
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Example of script : Display memory instructions

MAQAO Tool
Powerfull scripting interface
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STAN MTL

API bindings to Analysis And Binary layers

MIL

Analysis Layer

Loops

Instructions

Functions

Basic blocks

Binary Manipulation Layer

Re-assemble Patch/Rewrite

DisassembleDisassembler
Generator

…DECAN

MAQAO Lua Plugins

Debug symbols

Demangling

Other code abstraction 
algorithms

PROFILER

MAQAO Tool
MAQAO Framework
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 Decision tree: smallest possible
 Detect hot spots: 

 Function (with/without callgraph) or loops (outer)
 Include static estimation (sort functions)

 Code type characterization:
 Through dynamic analysis (DECAN)

 If memory bound: Memory behavior characterization
 If compute bound: Static analysis

 Iterative approach: 
 user chooses to start over again if it is worth

MAQAO Tool
Methodology
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 Contribute since 2006
 Old version, early days: 

 IA64: performance model, data dependency graph
 Scripting interface (integration of Lua)
 X86 assembly parser

 New version, during the thesis:
 MIL 
 MTL
 Profiler

MAQAO Tool
Contributions

Dynamic analysis
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Conclusion

 An instrumentation language to easily build 
custom performance evaluation tools

 A memory bahavior characterization tool

 A coase grain analysis tool: Profiler

 A methodology to analyze and optimize 
applications using MAQAO framework

 Contributions integrated into MAQAO tool along 
with external contributions
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Future work

 Models: we studied OpenMP but not MPI
 Extend MIL: 

 More domain specific elements (counters,timers)
 Complex events: support OpenMP

 Extend MTL: 
 Extend to OpenMP tasks
 Integrate timing information: temporal aspects
 Connect with runtimes

 Get information (OpenMP: chunks size, strategy)
 Provide information for betters decisions
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Thanks for your attention !

Questions ?
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