
Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

A generic approach to the definition of low-level
components for multi-architecture binary analysis

Cédric Valensi

PhD advisor: William Jalby

University of Versailles Saint-Quentin-en-Yvelines, France
Exascale Computing Research Center, France

LRC ITACA, France

July 2nd, 2014

1 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

High Performance Computing

Supercomputers

Front-line of the computing capacity

Multiprocessor systems

Current top speed 33 Petaflop/s

Applications

Physical simulations

Natural resources exploration

Molecular modeling

Weather forecasts

2 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Performance analysis for optimisation

Optimising performance of HPC applications

Optimise use of processors in terms of speed and power

Pinpoint bottlenecks

Estimate gain from improvements

Performance analysis

Static or dynamic

Instrumentation

Possible in all steps of the design process

3 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Steps of an application design process

4 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Steps of an application design process

4 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Steps of an application design process

4 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Steps of an application design process

4 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Steps of an application design process

4 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Performance analysis levels

Source code

Knowledge of source language

Requires access to source files

Compilation may perform complex transformations

Instrumenting at the source level may modify these transformations

5 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Performance analysis levels

Compiler Internal Representation

More accurate

Requires access to compiler internals

Requires intrusion into compilation process

Ineffective for code written in assembly

6 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Performance analysis levels

Assembly analysis

Closer to the actual executable

Not available by default

Requires intrusion into compilation process

7 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Performance analysis levels

Binary analysis

“What you see is what you run”

Allows to retrieve additional information

More complex

8 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Challenges of binary analysis

Dependent on the architecture

Multiple architectures may be used by a single application

Binary architectures evolve frequently

Static Analysis

Requires disassembly of binary code

Instrumentation

Requires static or dynamic patching

Extensive changes can be needed

9 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Contribution

Low level binary encoder and decoder

Able to support multiple architectures

Minimised implementation workload

Usage in analysis context

Customisable behaviour

Unified output format

Acceptable performance

Static analysis and instrumentation

10 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Outline

1 Introduction

2 Multi architecture support

3 Disassembly of binary files

4 Binary rewriting

5 Conclusion

11 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Objectives

Generic encoder and decoder

Multi-architecture support

Customisable output and behaviour

Reduced implementation workload

Challenges

Complex binary coding rules

Coding rules and assembly vary significantly between architectures

Avoid hard coding

12 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an Intel 64 instruction

13 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an Intel 64 instruction

13 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an Intel 64 instruction

13 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an Intel 64 instruction

13 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an Intel 64 instruction

13 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an Intel 64 instruction

13 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an Intel 64 instruction

13 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an Intel 64 instruction

13 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an Intel 64 instruction

13 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an Intel 64 instruction

13 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an Intel 64 instruction

13 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an Intel 64 instruction

13 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an ARM instruction

14 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an ARM instruction

14 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an ARM instruction

14 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an ARM instruction

14 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an ARM instruction

14 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an ARM instruction

14 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an ARM instruction

14 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an ARM instruction

14 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an ARM instruction

14 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Requirements

Ensuring agnosticism with regard to architecture

Unified representation of an architecture encoding rules

Decorrelation of decoding from post parsing actions

Same representation to generate encoder and decoder

Remaining close to the documentation format

Handling exclusions and restricted cases

Possibility of fields with no fixed value

15 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Using a context-free grammar formalism

Advantages

Allows to decorrelate the encoding rules from the actions performed

Decoder implemented as the corresponding parser

Multiple possible uses for the decoder

Encoder built from the same grammar

Challenges

Grammars usually operate at the character level

Using a bit by bit parsing would be inefficient

Lookahead challenged by instructions of variable sizes

16 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Standard notions

Context free grammars

Symbols associated to list of productions

A production contains terminal and nonterminal symbols

Terminal symbols have no production

Semantic actions associated to productions

LR parsers

Processing left to right

Bottom-up matching

Implemented as finite state automata

Shift and reduction states

17 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Our algorithm for parser generation

New principles

Bits can have a fixed or unfixed value

Terminals are defined as groups of bits

A state represents the matching of bits anywhere in the production

Transitions over terminals can include bits ahead of the parsing step

Shift/reduce states are authorised

Parser execution

Processing left to right

Terminals containing less unfixed bits are tested first

18 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Context free grammar

19 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Context free grammar

19 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Context free grammar

19 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Context free grammar

19 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Context free grammar

19 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Context free grammar

19 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Context free grammar

19 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Parser Generation from grammar

20 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Parser Generation from grammar

20 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Parser Generation from grammar

20 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Parser Generation from grammar

20 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Parser Generation from grammar

20 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Parser Generation from grammar

20 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Parser Generation from grammar

20 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Parser Generation from grammar

20 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Parser Generation from grammar

20 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Encoder generation

Building an encoder from the same grammar file

Semantic actions are redefined as matching functions

Input tentatively matched over all productions of nonterminals

Shortest productions are matched first

Nonterminals in a matching production are recursively matched

Resulting encoder algorithm corresponds to a top-down parser

21 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoder algorithm

22 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoder algorithm

22 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoder algorithm

22 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoder algorithm

22 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoder algorithm

22 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoder algorithm

22 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoder algorithm

22 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoder algorithm

22 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoder algorithm

22 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoder algorithm

22 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoder algorithm

22 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoder algorithm

22 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoder algorithm

22 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoder algorithm

22 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Validation

MINJAG

Uses a context-free grammar describing the architecture

Grammar generated from architecture documentation through
simple transformations

Generates the code for decoder and encoder from the same grammar

Functional tool used in a production context

Tested over Intel 64, Intel Xeon Phi coprocessor and ARM

23 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Characteristics of implemented architectures

Architecture Intel 64 Intel Xeon Phi ARM
Lines in instruction list 2,398 1,194 1,512
Lines in grammar 6,082 3,082 1,491
Reduction states 5,950 2,406 1,625
Shift states 4,019 1,468 2,916
Shift/reduce states 2 2 6
Total states 9,971 3,876 4,547

24 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

1 Introduction

2 Multi architecture support

3 Disassembly of binary files

4 Binary rewriting

5 Conclusion

25 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Challenges of disassembly

Binary code is not intended to be read

No constraints on the code as long as the program can be executed

No separation between instructions

Instructions may be of varying sizes

Specific examples

Interleaved foreign bytes

Overlapping instructions

Obfuscated code or binary format

Self rewriting code

26 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Interleaved foreign bytes

27 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Disassembly algorithms

Linear sweep

Decoding one instruction after another

Errors when encountering interleaved foreign bytes

Vulnerability to obfuscation methods

Faster disassembly

Recursive traversal

Decoding following the actual execution of the program

Resists to some obfuscation techniques

Finding the destination of a branch can be difficult

Slower disassembly

28 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Linear Sweep vs Recursive Traversal

29 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Linear Sweep vs Recursive Traversal

29 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Linear Sweep vs Recursive Traversal

29 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Linear Sweep vs Recursive Traversal

29 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Our constraints

Disassembler intended to be used by analysis tools

Retrieve all possible available information from the file

Architecture independent output format

Possibility to add customisable additional information

Acceptable performance in terms of speed and accuracy

30 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Our disassembling algorithm

General execution

Linear sweep parsing

Extraction of executable code from binary format

Retrieval of labels and debug information if present

Additional processing

Resolving destination of direct branches

Associating labels and debug information to instructions

Post parsing actions to fill additional information

Detection of unreachable instructions

Identification of dubious disassembled data

31 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Implementation: the MADRAS disassembler

Multi Architecture Disassembler, Rewriter and ASsembler

Relies on MINJAG for source code of decoder

Processes binaries using the ELF format used by Unix and Linux

Disassembler available for Intel 64, Xeon Phi coprocessor and ARM

Base component of the MAQAO framework

32 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Performance tests

Protocol

Comparison between MADRAS and hard coded disassemblers

Disassembling SPEC benchmarks and test files

Size of executable code varying between 1 and 23 MBytes
Executables compiled for Intel 64 and Xeon Phi coprocessor

Speed measured as disassembled instructions per second

33 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Disassembler performance on Intel 64 files

34 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Disassembler performance on Xeon Phi files

35 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Parallel disassembler performance

Intel 64 files

Xeon Phi files

36 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Disassembler accuracy

37 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

1 Introduction

2 Multi architecture support

3 Disassembly of binary files

4 Binary rewriting

5 Conclusion

38 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Instrumentation

Retrieving information during execution

Monitoring memory usage

Value profiling

Dynamic: Performed during execution

Monitoring code execution using a supervising thread

Invoking functions under specified conditions

Modifying the image loaded in memory

Static: Modifying the executable file

Probe insertion

Instructions modification

39 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Binary rewriting

Static instrumentation

No recompilation needed

No overhead from instrumentation process

No additional requirements for execution

Binary rewriting allows other modifications to the program

Deleting or adding instructions to test their overall impact

Modifying variables defined in the file

40 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Challenges of binary rewriting

Patched file must remain valid

Preservation of the structure of the binary file

Preservation of the control flow

Preservation of data environment

Executables are not intended to be modified

All references are fixed

No relocation tables

Addresses can appear as immediate operands

41 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example of patching pitfalls

42 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example of patching pitfalls

42 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example of patching pitfalls

42 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Binary rewriting algorithm

Block relocation

The code to be modified is moved in a new section in the executable

Code moved at the basic block level

Use of trampolines if the patching site is too small

43 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Code relocation

44 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Code relocation

44 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Code relocation

44 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Code relocation

44 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Code relocation

44 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Code relocation

44 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Code relocation

44 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Trampolines

45 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Trampolines

45 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Trampolines

45 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Trampolines

45 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Trampolines

45 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Trampolines

45 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Trampolines

45 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Trampolines

45 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Trampolines

45 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Implementation: the MADRAS patcher

Multi Architecture Disassembler, Rewriter and ASsembler

Relies on MINJAG for source code of assembler

Processes binaries under the ELF format used by Unix and Linux

Available for Intel 64 and Xeon Phi coprocessor

A production tool

C API

Back end of the MAQAO Instrumentation Language (MIL)

Used by the DECAN module

46 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Patcher features

Code insertion

Insertion of calls to functions from external or static libraries

Insertion of lists of assembly instructions

Conditions

Possibility to set conditions on the execution of an inserted code

Possibility to specify code to execute if such a condition is not met

Other features

Modification or deletion of instructions

Insertion of global variables usable by inserted code

47 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Using MADRAS API to insert a function call

void insert(char* in,char* lib,char* fct,uint addr,char* out) {
//Disassemble the file and inits the modifications

elfdis t* madras = madras disass file(in);

madras modifs init(madras, STACK SHIFT, 512);

//Adds a function call at the given address

insert t* ifct = madras fctcall new(madras, fct, lib, addr, 0);

//Adds the given address as an immediate parameter

madras fctcall addparam imm(madras, ifct, addr, 0);

//Commit changes

madras modifs commit(madras,out);

//Terminates the madras structure

madras terminate(madras);

}

48 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Interface with the MAQAO Instrumentation Language

49 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Performance of code patched by MIL

50 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

1 Introduction

2 Multi architecture support

3 Disassembly of binary files

4 Binary rewriting

5 Conclusion

51 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Contributions

Generic representation of binary encoding rules

Unified format

Use of the same grammar for encoder and decoder generation

Validated for the Intel and ARM architectures

Implemented as the functional tool MINJAG

Disassembly

Easier updates of architecture specific code

Performance comparable to existing hard coded tools

Customisable output

52 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Contributions

Patching

Fine granularity offering wide range of options

Patched code has similar or better performance than existing tools

MADRAS

Functional tool

Standalone implementation of the whole disassembly and
instrumentation chain

Handling of multiple architectures from a single executable

Integral component of the MAQAO framework

Used by the DECAN module

53 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Future work

General

Implement additional architectures

Support additional binary file formats

Generic encoder and decoder

Generic meta language for representing instruction lists

Extensions allowing to specialise generated parser

54 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Future work

Disassembler

Improve accuracy through use of recursive traversal

Detection of switch tables

Improve speed

Parallel disassembly

Application to domains outside performance analysis

Patcher

Improve safety of patching

Update of indirect branch destinations

55 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Q/A

Thank you for your attention!

56 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Additional slides

57 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example: Encoding of an ARM instruction

58 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Example of grammar for binary definition

%token <3,b> reg

%%

Start: template ;

template: Legacy3 Insn #[FULLINSN_L3PREFIX($1,$2)]#

| Insn #[FULLINSN($1)]# ;

MemModRM: 00 reg RMSIB_00 #[OPRS_REG_MEM($1,$2)]#

| 01 reg RMSIB_01 #[OPRS_REG_MEM($1,$2)]#

| 10 reg RMSIB_10 #[OPRS_REG_MEM($1,$2)]# ;

RegModRM: 11 reg RMSIB_11 #[OPRS_REG_REG($1,$2)]# ;

Insn: 00010000 RegModRM #[INSN(ADC,

REG(GEN8b,R,$1),REG(GEN8b,RW,$1))]#

| REX 00010000 MemModRM #[INSN(ADC,

REG(GEN8b,R,$1,$2),MEM(MEM8b,RW,$1,$2))]# ;

59 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Overlapping instructions

60 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Obfuscated code

61 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Performance tests

Disassemblers

objdump

XED

udis86

distorm

ndisasm

Disassembly modes

Print only mode for comparison against objdump and XED

Without parsing of the binary file against udis86 and distorm

62 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Intel 64 files used for the disassembler performance tests

File File size (MByte) Code size (MByte) Description

Small 0,96 0,96 Test file
fma3d 3,78 1,75 SPEC2001
calculix 5 2,31 SPEC2006
gcc 9,02 2,56 SPEC2006
dealII 60,94 2,83 SPEC2006
Xalan 130,64 3,46 SPEC2006
tonto 33,27 5,81 SPEC2006
wrf 19,52 6,83 SPEC2006
gamess 18,2 10,55 SPEC2006
Large 1 11,95 11,94 Test file
Large 2 23,22 23,22 Test file

63 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Xeon Phi files used for the disassembler performance tests

File File size (Mb) Code size (Mb) Description

equake 0,12 0,05 SPEC2001
art 0,21 0,12 SPEC2001
ammp 0,84 0,44 SPEC2001
swim 0,96 0,57 SPEC2001
wupwise 0,96 0,66 SPEC2001
mgrid 0,95 0,68 SPEC2001
applu 1,03 0,71 SPEC2001
apsi 2,61 1,72 SPEC2001
galgel 2,84 2,08 SPEC2001
fma3d 4,62 2,35 SPEC2001

64 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Disassembler performance on Intel 64 files

65 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Parallel disassembler performance

66 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Performance of patched code

67 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Performance of instrumentation

68 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

Performance of patched code

69 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

MADRAS overall architecture

70 / 55

Introduction
Multi architecture support
Disassembly of binary files

Binary rewriting
Conclusion

71 / 55

	Introduction
	Multi architecture support
	Disassembly of binary files
	Binary rewriting
	Conclusion

