Static and Dynamic Approach for Performance
Evaluation of Scientific Codes

Souad Koliai

PhD advisor: William Jalby

University of Versailles Saint-Quentin-en-Yvelines, France
Exascale Computing Research Center, France
LRC ITACA, France

July 11th, 2012

vz
S

LRC IT@QCA Exascaleco

0

Introduction

6 Introduction

e Static Analysis: Maaao

e Decremental Analysis: Decan
e Performance Evaluation Process

e Conclusion

Introduction

Computer Evolution & Bottleneck Detection

Optimization process: a non-one step process
@ Characterize the code
@ Diagnose the cause of the poor performance
@ Prescribe a suitable optimization

96

Introduction

Computer Evolution & Bottleneck Detection

Optimization process: a non-one step process

@ Characterize the code
@ Diagnose the cause of the poor performance
@ Prescribe a suitable optimization

What to do to diagnose the problem?

Gather data about:

@ Program
@ Architecture
@ Interaction between the two

Introduction

Computer Evolution & Bottleneck Detection

Micro-
Architecture
Complexity
Compiler \ /
Impact

program Bottleneck detection: a tedious
Behavior problem

@ Hardware issues:
@ Microarchitecture
o Memory

‘ @ Software issues:

@ Program behavior
o Compiler

Bottleneck
Detection

96

Introduction

Bottleneck Detection: Hardware Issues

What makes the microarchitecture complex?

@ Superscalar CPUs
@ Pipelined CPUs

@ Complex mechanisms:

@ Instruction pairing

@ Instruction fetching and decoding
@ Register renaming

e Out of order execution

Introduction

Bottleneck Detection: Hardware Issues

What makes the microarchitecture complex?

@ Superscalar CPUs
@ Pipelined CPUs

@ Complex mechanisms:

@ Instruction pairing
@ Instruction fetching and decoding
@ Register renaming

e Out of order execution

How to tackle this complexity?
@ Performance modeling to mimic the pipeline behavior

Introduction

Bottleneck Detection: Hardware Issues

Memory Wall

@ Increasing gap between CPU & memory bus frequency
@ CPU frequency = 2*Memory bus frequency
@ Caches:

o Associativity
@ Cache coherency
o Prefetching (HW/SW)

100,000

10,000

1
1980 1985 1990 1995 2000 2005 2010

96

Introduction

Bottleneck Detection: Software Issues

Compiler Dependency

@ Performance analysis on source code = simple
@ From source to binary = optimizations

Introduction

Bottleneck Detection: Software Issues

Compiler Dependency

@ Performance analysis on source code = simple
@ From source to binary = optimizations

v

Compiler Independency

@ Compiler optimizations = non-controlled tuning
@ Performance analysis on binary code = compiler-independent

v

10/96

Introduction

Contributions

How to tackle the bottleneck detection problem?
@ Systematic/Automatic approach
@ Different techniques, different strengths

11/96

Introduction

Contributions

How to tackle the bottleneck detection problem?

@ Systematic/Automatic approach
@ Different techniques, different strengths

v

Thesis contribution

@ Static and dynamic approach for a better evaluation process

12/96

Introduction

Contributions

How to tackle the bottleneck detection problem?

@ Systematic/Automatic approach
@ Different techniques, different strengths

v

Thesis contribution

@ Static and dynamic approach for a better evaluation process

@ Static analysis: Maaao
@ Tackles microarchitecture and compiler impact

13/96

Introduction

Contributions

How to tackle the bottleneck detection problem?

@ Systematic/Automatic approach
@ Different techniques, different strengths

v

Thesis contribution

@ Static and dynamic approach for a better evaluation process
@ Static analysis: Maaao

@ Tackles microarchitecture and compiler impact
@ Dynamic analysis: Decan

o Tackles memory wall

14/96

Static Analysis: Macao

6 Introduction

e Static Analysis: Maaao

e Decremental Analysis: Decan
e Performance Evaluation Process

e Conclusion

15/96

Static Analysis: Macao

Static Analysis in Performance Evaluation

Static Analysis: Why?

@ First step in quality-control process

@ Fast, abstracts dynamic phenomena
@ Can be applied earlier in development
@ Input dataset independent

@ Detailed hints on code structure

16/96

Static Analysis: Macao

Static Analysis in Performance Evaluation

Static Analysis: Why?

@ First step in quality-control process

@ Fast, abstracts dynamic phenomena
@ Can be applied earlier in development
@ Input dataset independent

@ Detailed hints on code structure

Static Analysis: How?
@ Performance modeling of microarchitecture

17/96

Static Analysis: Macao

Motivating Example

DO cbh=1,ncbt
igp = isg; isg = icolb(ich+1); igt=isg + igp
DO ig=1,igt
e =ig +igp
i = nnbar(e,1)
j = nnbar(e,2)
DO k=1,ndof
DO |=1,ndof

vecy(i,k) = vecy(i,k) + ompu(e,k,l)*vecx(j,l)
vecy(j,k) = vecy(j,k) + ompl(e,k,l)*vecx(i,l)
ENDDO
ENDDO
ENDDO ENDDO

| Sparse Matrix-Vector Product

18/96

Static Analysis: Macao

Motivating Example

Execution ports in the Core 2 microarchitecture

19/96

Static Analysis: Macao

Motivating Example

FP FP
Multiply Addition

Execution ports in the Core 2 microarchitecture

20/96

Static Analysis: Macao

Motivating Example

FP BRANCH
Mul t1p1 Yy Addition

Execution ports in the Core 2 microarchitecture

21/96

Static Analysis: Macao

Motivating Example

FP LOAD BRANCH
Mul t1p1 Yy Addition

Execution ports in the Core 2 microarchitecture

22/96

Static Analysis: Macao

Motivating Example

FP LOAD STORE STORE BRANCH
Mu1 t1p1 Yy Addition Address Data

Execution ports in the Core 2 microarchitecture

23/96

Static Analysis: Macao

Motivating Example

14
12

10

4 I I I I l I
0
PO P1 P2 P3 P4 P5

Execution Ports

Cycles

N

Dispatch on execution ports

24/96

Static Analysis: Macao

Static Analysis in Performance Evaluation

Performance Modeling

@ Mimics the microarchitecture behavior

@ Focus on significant parts of the microarchitecture
@ Gives performance predictions

@ Detect inefficiencies statically

@ No overhead

25/96

Static Analysis: Macao

Static Analysis in Performance Evaluation

Static Analysis & Accuracy

@ No knowledge about dynamic phenomena:

e Data caching
o lteration count

26/96

Static Analysis: Macao

Static Analysis in Performance Evaluation

Static Analysis & Accuracy

@ No knowledge about dynamic phenomena:
e Data caching
o lteration count

@ Performance model:

@ Goes beyond than GFLOPS estimate
e Gives detailed info on the microarchitecture behavior

Static Analysis: Macao

Static Analysis in Performance Evaluation

Static Analysis & Accuracy

@ No knowledge about dynamic phenomena:

e Data caching
o lteration count

@ Performance model:

@ Goes beyond than GFLOPS estimate
e Gives detailed info on the microarchitecture behavior

@ Core 2 and NHM plugins in Maaao

28/96

Static Analysis: Macao

Static Analysis in Maaao

Maaao framework
@ Maaro: a Modular Assembly Quality Analyzer and Optimizer
@ First version of Maaao for the ltanium architecture
@ Current version of Maaao for the x86 architecture

29/96

Static Analysis: Maaao

Static Analysis in Maaao

Maaao framework

@ Maanao: a Modular Assembly Quality Analyzer and Optimizer
@ First version of Maaao for the ltanium architecture
@ Current version of Maaao for the x86 architecture

@ Maano = code restructuring + LUA plugins
@ Static analysis performance model plugin for:

@ The Core2 architecture
o NHM architecture

@ Performance model in LUA for rapid prototyping

30/96

Static Analysis: Macao

Maaao Workflow from Binary to Code Quality Report

]

— Code Quality Report

31/96

Static Analysis: Macao

Maaao Workflow from Binary to Code Quality Report

4 Disassembling |—»

— Code Quality Report

32/96

Static Analysis: Macao

Maaao Workflow from Binary to Code Quality Report

- Call Graph

- Control Flow Graph

- Data Dependence Graph ——

4 Disassembling —»’ Code Restructuring

- Loop Detection

— Code Quality Report

33/96

Static Analysis: Macao

Maaao Workflow from Binary to Code Quality Report

- Call Graph

- Control Flow Graph

- Data Dependence Graph ——

4 Disassembling —»’ Code Restructuring

- Loop Detection

LUA Plugin 1

p— — Code Quality Report

LUA Plugin N

34/96

Static Analysis: Macao

Maaao Workflow from Binary to Code Quality Report

- Call Graph

- Control Flow Graph

- Data Dependence Graph ——

4 Disassembling —»’ Code Restructuring

- Loop Detection

LUA Plugin 1

\ LUA Plugin i:
—a Performance Model —_— Code Quality Report
On inner loops

LUA Plugin N

35/96

Static Analysis: Macao

Static Analysis in Maaao

Performance Model in Maqao
@ Computes asymptotic estimation
@ Evaluates inner loop execution time

@ Simulates the front-end and the back-end of the Core 2/NHM
pipelines

36/96

Static Analysis: Macao

Performance Modeling

%

Front-End

Front-End

37/96

Static Analysis: Macao

Performance Modeling

%

Front-End

Front-End Back-End

38/96

Static Analysis: Macao

Performance Modeling

Instruction

Fetch Unit | Max 1 16-byte |
(IFU) block per cycle

Front-End

Front-End Back-End

39/96

Static Analysis: Macao

ance Modeling

Instruction
Fetch Unit
(IFU)

Max 1 16-byte
block per cycle

Predecoder

tions per cycle

Front-End

Front-End

Back-End

40/96

Static Analysis: Macao

ance Modeling

Instruction . Instruction
. | Max 1 16-byte Max 6 instruc- Max 4 instruc-, Max 7 uoj
Fetch Unit block per cycle Predecoder [tions per cycle™] ns per cycle Decoders per cycle Decode Queue
(IFU) (IDQ)
Front-End
Front-End Back-End

41/96

Static Analysis: Macao

ance Modeling

Instruction . Instruction
. | Max 1 16-byte Max 6 instruc- Max 4 instruc-, Max 7 uops,

Fetch Unit block per cycle Predecoder [tions per cycle™] ns per cycle Decoders per cycle Decode Queue

(IFU) (IDQ)

Front-End

Instruction X

Decade Queue | 1722 S, Teads per cyde
(IDQ)
Front-End Back-End

42/96

Static Analysis: Macao

ance Modeling

Instruction . Instruction
. | Max 1 16-byte Max 6 instruc- Max 4 instruc-, Max 7 uops,

Fetch Unit block per cycle Predecoder [tions per cycle™] ns per cycle Decoders per cycle Decode Queue

(IFU) (IDQ)

Front-End
Instruction
Max 4 uopg : Max 6 uops,

Deco(tligg)ueue per cycle eads per cycle Dispatcher per cycle

Front-End Back-End

43/96

Static Analysis: Macao

ance Modeling

Instruction . Instruction
. | Max 1 16-byte Max 6 instruc- Max 4 instruc-, Max 7 uops,
Fetch Unit block per cycle Predecoder [tions per cycle™] ns per cycle Decoders per cycle Decode Queue
(IFU) (IDQ)
Front-End
Ins(tjructlon Max 4 uopg . h Max 6 uops, | Execution | Max 6 uops,
DECO(ISQQ)UEUE per cycle eads per cycle Dispatcher per cycle units per cycle

Front-End Back-End

44/96

Static Analysis: Macao

ance Modeling

Max 1 16-byte | predecoder |_Max 6 instruc- _Max4instruc, | pecoders | Max7uops,
block per cycle tions per cycle tions per cycle per cycle
Front-End

Max 4 uops
per cycle

Dispatcher | Max 6 uo
per cycle

Max 6 uops,

reads per cycle per cycle

Front-End Back-End

45/96

Static Analysis: Macao

Performance Modeling

Vectorization
@ Instruction level parallelization
@ Operations on vector operands
@ 128,256-bit vector in modern processors

46/96

Static Analysis: Macao

Performance Modeling

@ Instruction level parallelization
@ Operations on vector operands
@ 128,256-bit vector in modern processors

Vectorization & Performance Model

@ Evaluates the compiler vectorizing capabilities
@ A ratio of 1 means that the code is fully vectorized
@ A ratio of 0 means that the code is not vectorized

Static Analysis: Maaao

Performance Modeling

for (i=0 ; i<N ; i++)
y[i] += alpha*x[i]

B1: Non vectorized
movsd (%rdi,%rax,8),%xmml
mulsd %xmm®, %xmml
addsd (%rsi,%rax,8), %xmml
movsd %xmml, (%rsi,%rax,8)

incq %rax

cmpg %r8, %rax

jb Bl
X 1 2 i i+1 N-1 N
Y 1 2 i i+1 N-1 N

48/96

Static Analysis: Maaao

Performance Modeling

for (i=0 ; i<N ; i++)
y[i] += alpha*x[i]

B1: Non vectorized
movsd (%rdi,%rax,8),%xmml
mulsd %xmm®, %xmml
addsd (%rsi,%rax,8), %xmml
movsd %xmml, (%rsi,%rax,8)

incq %rax

cmpg %r8, %rax

jb Bl
% 1 2 i i .- N1 | N
Y 1 2 i i+1 N-1 N

49/96

Static Analysis: Maaao

Performance Modeling

for (i=0 ; i<N ; i++)
y[i] += alpha*x[i]

Bl: Vectorized

movaps (%rdi,%rax,8),%xmml
mulpd %xmm®, %xmml

addpd (%rsi,%rax,8), %xmml
movaps %xmml, (%rsi,%rax,8)
addq $16, %rax

cmpg %r8, %rax

jb B1

i i+1 N-1 N

i i+1 N-1 N

50/96

Static Analysis: Maaao

Performance Modeling

B1l: Vectorized
movaps (%rdi,%rax,8),%xmml
mulpd %xmm®, %xmml

for (i=0 ; i<N ; i++) addpd (%rsi,%rax,8), %xmml

y[i] += alpha*x[i] movaps %xmml, (%rsi,%rax,8)

addq $16, %rax
cmpg %r8, %rax
jb B1

51/96

Static Analysis: Macao

Performance Modeling

Code Characteristics & Performance Model
@ Bytes loaded/stored per cycle: memory traffic
@ Vector registers used: register spilling

52/96

Static Analysis: Macao

Performance Modeling

Code Characteristics & Performance Model
@ Bytes loaded/stored per cycle: memory traffic
@ Vector registers used: register spilling

Performance Prediction & Performance Model

@ Performance prediction for:
e Vectorization
o L1 = max(front-end,back-end)
e L2/RAM: pattern matching

53/96

Static Analysis: Macao

Performance Modeling

Performance Prediction & Pattern Matching
@ A step further in static analysis
@ A bridge from static to dynamic analysis

Target Code

Movaps (%rax),%xmmo0
Movaps (%rcx),%xmm1

Movaps (%.r.i.o),%xmm:-!
Movaps %xmmé4,(%rdx)
Movaps (%rbx),%xmm9

Movaps (%r15),%xmm0

Micro-Kernels
Data-Base o
A%

e Prediction

54/96

Decremental Analysis: Decan

6 Introduction

e Static Analysis: Maaao

e Decremental Analysis: Decan
e Performance Evaluation Process

e Conclusion

55/96

Decremental Analysis: Decan

Dynamic Analysis in Performance Evaluation

Dynamic Analysis: Why?

@ Complements the static analysis
@ Detects dynamic dependencies
@ Collects temporal information

@ Deals with input dataset

Inner Memory overhead

40 I
0
00

LapcTotal LapxOpt LapyTotd LapyOpt. LapzTotal LapzOpt Wavefied Total Wavefied Opt
@ Foistream @ Memory overhead 56/96

Cycle per elements

Decremental Analysis: Decan

Dynamic Analysis in Performance Evaluation

Dynamic Analysis: How?

@ A new approach in dynamic analysis: Decan
@ Deeper in program understanding
@ Use static analysis report to drive the analysis

57/96

Decremental Analysis: Decan

Decan: Concept and Workflow

Decan concept

@ Fine-grained bottleneck detection approach
@ Similar to the debug process:

e A bug occurs
e = Code transformation
e = Run the code to check if the bug still occur or not

@ Poor performance considered as a bug

58/96

Decremental Analysis: Decan

Decan: Concept and Workflow

How Decan works?

@ Performs on critical routines

@ Targets inner loops

@ Performs via binary patching

@ Detects memory access impact

@ Focuses on Streaming SIMD Extensions instructions (SSE) =
vector instructions

59/96

Decremental Analysis: Decan

Decan: Concept and Workflow

Profiling
Original Binary) —(Critical Routine

For Each Loop
Perform Instruction Patching

A/B/é\[)\E
.

BlnA BinB B|nC BinD BinE

T

Execution in Original Context

m O O W >»

one load / one store patched

all loads patched

all stores patched

all loads-stores patched

grouping

60/96

Decremental Analysis: Decan

Motivating Example

4K-aliasing detection

@ A false dependency between loads of acx(i-1,j,k), temp(i-1,j,k)
and the store of vhilf(i,j,k)

@ Serialization of the memory accesses
@ False dependency due to 4K-aliasing

do k = anf3, end3
do j = anf2, end2
do i=anfl, endl
vhilf(i,j,k) = temp(i,j,k) - (

& (acx(i-1,j ,k) * temp(i-1,j ,k)
& +acx(i j .k)*temp(i+l,j k)
& +acy(i -1,k)*temp(i ,j-1,k)
& +acy(i ,j k)*temp(i j+1k)
& +acz(i ,j ,k-1)*temp(i ,j ,k-1)
& +acz(i ,j ,k)*temp(i ,j ,k+1))
&)/ coeffd(i,jk)
end do
enddo
enddo

Matrix-Vector product loop

61/96

Decremental Analysis: Decan

Motivating Example

What is 4K-aliasing?

Suppose the following portion of code:

for (i=0 , i<SIZE , i++)
a(i) = b(i-offset)

@ If (add(a) MOD 4KB) = (add(b) MOD 4KB) (the same lower 12
bits)
@ With offset = 1 there is a conflict between:

o the store a(i) at iteration i
o the load b((i+1)-1) at iteration i+1

62/96

Decremental Analysis: Decan

Motivating Example

Impact of load/store instructions on Matvec subroutine

Original
matvec_loop2_Id_0x403dd3
matvec_loop2_Id_0x403dda
matvec_loop2_Id_0x403de1
matvec_loop2_ld_0x403de7
matvec_loop2_Id_0x403dee
matvec._loop2_Id_0x403df8
matvec_loop2_Id_0x403e02
matvec_loop2_ld_0x403e08
matvec_loop2_ld_0x403e12
matvec_loop2_ld_0x403e1c
matvec_loop2_ld_0x403e26

matvec_loop2_Id_0x403e2c

Transformed binaries generated by DECAN

i

matvec_loop2_Id_0x403e36
matvec_loop2_Id_0x403e50
matvec_loop2_loads
matvec_loop2_st_Ox403e5a
matvec_loop2_stores

matvec_loop2_stores_loads

°
5
3
"
8
s
]
3
8

Cycles
63/96

Decremental Analysis: Decan

Decan: How to discard an instruction?

Instruction Removal
@ From SSE memory instructions to nop
@ Performed via binary patching

64/96

Decremental Analysis: Decan

Decan: How to discard an instruction?

Instruction Removal

@ From SSE memory instructions to nop
@ Performed via binary patching

@ For any loop containing n instructions, Decan generates:
@ nversions, each one corresponds to the removal of one memory
access
@ One version without any load
@ One version without any store
@ One version without any load/store

65/96

Decremental Analysis: Decan

Decan: How to discard an instruction?

Instruction Removal

@ From SSE memory instructions to nop
@ Performed via binary patching

@ For any loop containing n instructions, Decan generates:

@ nversions, each one corresponds to the removal of one memory
access

@ One version without any load

@ One version without any store

@ One version without any load/store

@ The nop used to patch has the same size than the suppressed
instruction:
e To avoid artifical pressure on the execution ports
@ To keep instruction alignement unchanged

Decremental Analysis: Decan

Decan: How to discard an instruction?

lllustrating Example

Consider the following vector addition:
Bl:
movsd (%rdi,%rax,8),%xmm1
mulsd %xmm@®, %xmml
for (i=0 ; i<size ; i+=2) addsd (%rsi,%rax,8), Yoxmm1
y[i] += alpha*x[i] movsd %xmm1, (%rsi,%rax,8)
addq $16, %rax
cmpq %r8, %rax
jb Bl

Decremental Analysis: Decan

lllustrating Example

The patching is performed as follows:
Bl: #One load is patched

nop operand

mulsd %xmm®, %xmml

addsd (%rsi,%rax,8), %xmml
movsd %xmml, (%rsi,%rax,8)
addq $16,%rax

cmpq %r8, %rax

jb Bl

68/96

Decremental Analysis: Decan

lllustrating Example

The patching is performed as follows:
Bl: #One load is patched

nop operand

mulsd %xmm®, %xmml

addsd (%rsi,%rax,8), %xmml
movsd %xmml, (%rsi,%rax,8)
addq $16,%rax

cmpq %r8, %rax

jb Bl

Bl: #All loads are patched

nop operand

mulsd %xmm®, %xmml

nop operand

movsd %xmml, (%rsi,%rax,8)
addq $16, %rax

cmpq %r8, %rax

jb Bl

Decremental Analysis: Decan

Decan: How to discard an instruction?

Grouping version of patching

@ A group is a set of memory instructions that are using the same
base address, ie. accessing to the same array

@ DecaN patches a group to detect the impact of these accesses on
performance

70/96

Decremental Analysis: Decan

Decan: How to discard an instruction?

for (iif = 3,ic =2 ;ic < nc;ic++,iif +=2){
ucliclljc] = 0.5 * uf[iifl[jf] + 0.125 * (
ucliif + 11[jf] + uffiif - 11jf] +
uf[iif1ljf + 11 + ucliiflljf - 11);

71/96

Decremental Analysis: Decan

DecaN: How to discard an in

.Bl.4:
movsd (%r8,%rdi), %xmm2
incq %r11
movsd (%r8,%r9), %oxmm3
mulsd %xmm1, %xmm3
addsd (%r8,%rsi), %oxmm2
addsd 8(%r8,%r9), %oxmm2
addsd -8(%r8,%rbx), %xmm2
mulsd %xmmO0, %xmm2
for (iif = 3,ic = 2 ;ic < nc; ic++, iif += 2){ addsd %xmm2, %xmm3
uc[iclljc] = 0.5 * uffiifl[jf] + 0.125 * (movsd %xmm3, (%r15,%r12)
ucliif + 11[jf] + ufTiif - 11[jf] + movsd (%r8,%rax), %xmma
ufLifIGf + 11 + ucliifllf - 11); movsd (%r8,%rcx), %xmm5
} mulsd %xmm1, Y%oxmm5
addsd (%r8,%rdx), %oxmm4
addsd 8(%r8,%rcx), Y%oxmm
addsd -8(%r8,%r14), %xmm4
mulsd %xmm0, %xmmé4
addq -16(%rsp), %r8
addsd %xmm4, %xmm5
movsd %xmmb, (%r15,%r10)
addq %rbp, %r15
cmpq %r13, %r1l
ib .B1.4

72/96

Decremental Analysis: Decan

Decan: Error Handling

Decremental Analysis Limitations

@ Dealing side effects when patching instructions
@ Semantics are lost
@ This is:

e A fine-grained approach

o Coupled with profiling

73/96

Decremental Analysis: Decan

Decan: Error Handling

@ Decan alterates the semantics of the code
@ Is not considered in the analysis any binary leading to a crash

74/96

Decremental Analysis: Decan

Decan: Error Handling

@ Decan alterates the semantics of the code
@ Is not considered in the analysis any binary leading to a crash

FP Exception

@ Detected and counted in Decan binaries
@ Any binary that generates FPE is removed from the analysis

75/96

Performance Evaluation Process

6 Introduction

e Static Analysis: Maaao

e Decremental Analysis: Decan
e Performance Evaluation Process

e Conclusion

76/96

Performance Evaluation Process

Toward a better evaluation process

Performance Evaluation Methodology: Why?

@ Key factor for:

@ A good optimization
@ A bottleneck detection in the minimum time

@ Systematic process = good return on investment
@ Not a theoretical concept

Performance Evaluation Process

Toward a better evaluation process

Performance Evaluation Methodology: Why?

@ Key factor for:

@ A good optimization
@ A bottleneck detection in the minimum time

@ Systematic process = good return on investment
@ Not a theoretical concept

@ Performance Evaluation Process is like a recipe
@ Choose the best ingredients
@ Choose ingredients that go well

78/96

Performance Evaluation Process

Toward a better evaluation process

Performance Evaluation Methodology: How?

@ Combine complementary ingredients/analyses:
e Profiling to detect critical routine
e Static analysis to estimate quality of the code
e Dynamic analysis to pinpoint the delinquent memory access

@ At each iteration of the process, we go deeper in the
understanding of the program behavior

79/96

Performance Evaluation Process

Toward a better evaluation process

F1 | F2 | F3 | F4 | F5 | F6 | F7

MaqQao X X X - = _ _

DEcaN = - - = X X _

Hardware Performance Monitoring - - - X - - -
Memory Traces - = = - _ _ X

Tools and target features

@ F1 Vectorization

@ F2 Dispersal on execution ports

F3 Estimation bound in L1, L2, and RAM
@ F4 Cache misses

@ F5 Load-Store impact

@ F6 4K-aliasing

@ F7Memory access patterns.

80/96

Performance Evaluation Process

Evaluation Process on Industrial Program

RECOM application
@ Builds a 3D model of industrial-scale furnaces
@ Critical routine: RBgauss
@ Implements a Red-Black solver

DO IDO=1,NREDD
INC = INDINR(IDO)

HANB = AM(INC,1)*PHI(INC+1) &
+AM(INC,2)*PHI(INC-1) &
+ AM(INC,3)*PHI(INC+INPD) &
+ AM(INC,4)*PHI(INC-INPD) &
+ AM(INC,5)*PHI(INC+NIJ) &
+ AM(INC,6)*PHI(INC-N1J) &
+SU(INC)

DLTPHI = UREL*(HANB/AM(INC,7) - PHI(INC))
PHI(INC) = PHI(INC) + DLTPHI

RESI = RES| + ABS(DLTPHI)
RSUM = RSUM + ABS(PHI(INC))
ENDDO

I Most-time-consuming loop in RBgauss ‘

81/96

Performance Evaluation Process

Static Analysis on RECOM
Static Analysis detects:
@ Loop not vectorized
@ Loop memory bound
@ Lower bound that can be achieved

Cycles

14
12
10
8
| I I
a
2
o

VectRatio pPredec Dec
FronfEnd BackEnd

Loop Characteristics 82/96

Performance Evaluation Process

Static Analysis on RECOM
Static Analysis detects:
@ Loop not vectorized
@ Loop memory bound
@ Lower bound that can be achieved

Cycles

PerfL1 PerfL2 Perf RAM Perf Vect

Predictions 83/96

Performance Evaluation Process

Decremental Analysis on RECOM - All patch versions

Impact of load/store instructions on RBgauss subroutine

original
rbgauss__loop0_ld_0x402¢27_line9s
tbgauss__loop0_ld_0x402c2e_liness
rbgauss__loop0_ld_0x402¢35_liness
tbgauss__loop0_ld_0x402¢3b_lines9
tbgauss__loop0_ld_0x402¢42_lines9
tgauss_loop0_ld_0x402c49_lineg0
thgauss_loop0_Id_0x402¢50,line90
rbgauss__loop0_Id_0x402¢57_line91
rbgauss__loop0_Id_0x402cSe_line91
tbgauss__loop0_Id_0x402¢65_line92
rbgauss__loop0_ld_0x402¢6c_line92
tbgauss__loop0_ld_0x402¢73_line93
tbgauss__loop0_ld_0x402¢7a_line93

bgauss__loop0_ld_0x402c9a_liness

Transformed binaries generated by DECAN

tbgauss__loop0_ld_0x402ca4_lineds
tbgauss_loop0_Id_0x402cbf_line99
tbgauss_loop0_ld_0x402cce_line100
thgauss_loop0_loads
thgauss_loop0_st_0x402cc7_lined7
tbgauss__loop0_stores.

tbgauss_loop0_stores_loads

°
5
N
8
8
@
&
IS
&
&

Cycles

& 84/96

Performance Evaluation Process

De tal Analysis on RECOM - Grouping version

Recom application - Grouping of SSE memory instructions
that access to the same base address (AM array)

- _

thgauss_Ioop0_loads_AM

Tbgauss_loopo_loads

5

Cycles.

85/96

Performance Evaluation Process

Optimization

@ Stride 2 access on AM array
@ Split AM into two arrays with a stride 1 access

DO IDO=1,NREDD DO IDO=1,NREDD
INC = INDINR(IDO) INC = INDINR(IDO)

INC_AMR = INDAMR(IDO)
HANB = AM(INC,1)*PHI(INC+1) &

+AM(INC 2)*PHI(INC-1) & HANB = AMR(INC_AMR,1)*PHI(INC+1) &

+ AM(INC,3)*PHI(INC+INPD) & + AMR(INC_AMR,2)*PHI(INC-1) &

+ AM(INC,4)*PHI(INC-INPD) & + AMR(INC_AMR 3)*PHI(INC+INPD) &

+ AM(INC 5)*PHI(INC+NIJ) & + AMR(INC_AMR 4)*PHI(INC-INPD) &

+ AM(INC,6)*PHI(INC-NIJ) & + AMR(INC_AMR 5)*PHI(INC+NIJ) &

+SU(INC) + AMR(INC_AMR 6)*PHI(INC-NIJ) &
+SU(INC)

DLTPHI = UREL*(HANB/AM(INC,7) - PHI(INC))
PHI(INC) = PHI(INC) + DLTPHI DLTPHI = UREL*(HANB/AMR(INC_AMR,7) - PHI(INC))
PHI(INC) = PHI(INC) + DLTPHI

RESI = RES| + ABS(DLTPHI)

RSUM = RSUM + ABS(PHI(INC)) RESI = RESI + ABS(DLTPHI)
ENDDO RSUM = RSUM + ABS(PHI(INC))
ENDDO
[most-ti ing loop in RBgauss |

[Most-time-consuming loop in Rbgauss - Optimized

86/96

Performance Evaluation Process

Speedup achieved in unicore in RBgauss sub

(@) ROTSC
(o) Hardware Counters
G
[
Hardware counters Cade
mRbgauss ORIGINAL B Rbgauss OPTIMIZED. mRbgauss ORIGINAL B Rbgauss OPTIMIZED.

Performance Evaluation Process

Speedup achieved in multicore in RECOM application: 1.4

Speedup

0.00

AIOLOS application

1 2 3 4

Number of Threads

B AIOLOS original B AIOLOS optimized

88/96

Conclusion

6 Introduction

e Static Analysis: Maaao

e Decremental Analysis: Decan
e Performance Evaluation Process

e Conclusion

89/96

Conclusion

Performance Evaluation Methodology

@ A good performance evaluation for a good optimization
@ Combine complementary techniques/strengths

@ Maaao for static analysis

@ Decan, HPM, Memory tracing for dynamic analysis

@ Validated experimentally on industrial applications

@ Speedup achieved on industrial applications

90/96

Conclusion

Maano Static Analysis

@ Considered as a first step in a performance evaluation process
@ Fast, abstracts the dynamic phenomena

@ A performance model for the Core2 and NHM microarchitectures
@ Will be extended to new x86 microarchitectures

91/96

Conclusion

Decan Decremental Analysis

@ Decan, decremental analysis tool

@ New approach for a fine-grained analysis

@ Simple concept, similar to the debug process
@ Compiler-independent, target binary codes

@ Quantify dynamic phenomena

92/96

Conclusion

@ Extend Maaao static analysis to new x86 microarchitectures:
Sandy Bridge

93/96

Conclusion

Future Work

@ Extend Maano static analysis to new x86 microarchitectures:
Sandy Bridge

@ In Decan, address loops
with control flow /
DECAN
Control Flow
Alteration 3

94/96

Conclusion

Future Work

@ Extend Maaao static analysis to new x86 microarchitectures:
Sandy Bridge

@ In Decan, address loops
with control flow

KO
K
@ Extend the concept of E E
Decremental Analysis to go B E
from instruction to threads’
tasks % %
]

95/96

Conclusion

Thank you!

96/96

	Introduction
	Static Analysis: Maqao
	Decremental Analysis: Decan
	Performance Evaluation Process
	Conclusion

